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Abstract

HD 106315 and GJ 9827 are two bright, nearby stars that host multiple super-Earths and sub-Neptunes discovered by
K2 that are well suited for atmospheric characterization. We refined the planets’ ephemerides through Spitzer transits,
enabling accurate transit prediction required for future atmospheric characterization through transmission spectroscopy.
Through a multiyear high-cadence observing campaign with Keck/High Resolution Echelle Spectrometer and
Magellan/Planet Finder Spectrograph, we improved the planets’ mass measurements in anticipation of Hubble Space
Telescope transmission spectroscopy. For GJ 9827, we modeled activity-induced radial velocity signals with a Gaussian
process informed by the Calcium II H&K lines in order to more accurately model the effect of stellar noise on our data.
We measured planet masses of Mb=4.87±0.37 M⊕, Mc=1.92±0.49 M⊕, and Md=3.42±0.62 M⊕. For HD
106315, we found that such activity radial velocity decorrelation was not effective due to the reduced presence of spots
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and speculate that this may extend to other hot stars as well (Teff>6200 K). We measured planet masses of
Mb=10.5±3.1 M⊕ and Mc=12.0±3.8 M⊕. We investigated all of the planets’ compositions through comparison
of their masses and radii to a range of interior models. GJ 9827 b and GJ 9827 c are both consistent with a 50/50 rock-
iron composition, GJ 9827 d and HD 106315 b both require additional volatiles and are consistent with moderate
amounts of water or hydrogen/helium, and HD 106315 c is consistent with a ∼10% hydrogen/helium envelope
surrounding an Earth-like rock and iron core.

Unified Astronomy Thesaurus concepts: Radial velocity (1332); Exoplanets (498); Mini Neptunes (1063); Transit
photometry (1709); Gaussian Processes regression (1930); Super Earths (1655)

Supporting material: machine-readable tables

1. Introduction

Small planets cover a wide variety of compositions ranging
from dense, iron-rich planets to low density planets with large
hydrogen/helium envelopes. Mass and radius are degenerate
with many potential compositions; measurements of atmo-
spheric compositions can help break this degeneracy (Figueira
et al. 2009; Rogers & Seager 2010).

In this paper, we characterize two planetary systems, HD
106315 and GJ 9827. These systems both consist of multiple
planets transiting bright, nearby host stars. Both systems contain
promising targets for atmospheric composition studies through
transmission spectroscopy. Three of the planets are being observed
by the Hubble Space Telescope (HST) to study their atmospheres
in GO-15333 (Kreidberg et al. 2020, Benneke et al. 2020, in
preparation) and GO-15428 (Hedges et al. 2020, in preparation).
These three planets are additionally compelling targets for the
James Webb Space Telescope (JWST) as determined by their
transmission spectroscopy metric values (TSM; Kempton et al.
2018; HD 106315 c: 91; GJ 9827 b: 95; GJ 9827 d: 144). Precise
mass measurements (20% precision) are needed to support the
ongoing HST analyses and potential JWST observations as mass
directly affects the observability of features and inferred properties
from spectra (Batalha et al. 2019).

We measure the planet radii and update their ephemerides
with Spitzer transit observations in Section 2. We describe our
spectroscopy, imaging data, and update stellar parameters in
Section 3. We investigate stellar activity in our radial velocity
observations, K2 photometry, and ground-based photometry in
Section 4. We refine the planet masses through radial velocity
analyses and explore the stability of including non-zero
eccentricities with N-body simulations in Section 5. Finally,
we examine potential interior compositions in Section 6 by
comparing the masses and radii with composition models,
before concluding in Section 7.

1.1. GJ 9827

GJ 9827 (K2-135) is a bright (V=10.3 mag, K=7.2 mag),
nearby (distance=30 pc) K6 dwarf star hosting three planets
discovered in K2 Campaign 12 (Niraula et al. 2017; Rodriguez
et al. 2018). Planets b and c orbit near a 3:1 resonance at 1.2
days and 3.6 days, with planet d at 6.2 days. These three planets
span the gap seen in the radius distribution of small planets
(Fulton et al. 2017) sized at 1.529±0.058 R⊕, 1.201±0.046
R⊕, and 1.955±0.075 R⊕ respectively. Niraula et al. (2017)
additionally collected seven radial velocity observations with the
FIbrefed Echelle Spectrograph (FIES; Frandsen & Lindberg
1999; Telting et al. 2014) to vet the system and to derive stellar
parameters.

The mass of planet b was first determined with radial velocity
observations from the Carnegie Planet Finder Spectrograph (PFS;

Crane et al. 2006, 2008, 2010) on Magellan II by Teske et al.
(2018; Mb∼8M⊕), who placed upper limits on planets c and d
(Mc<2.5M⊕, Md<5.6 M⊕). Through additional measurements
with the High Accuracy Radial velocity Planet Searcher (HARPS;
Mayor et al. 2003) and the HARPS for the Northern hemisphere
(HARPS-N), Prieto-Arranz et al. (2018) determined the masses of
all three planets (Mb=3.74± 0.50 M⊕, Mc=1.47± 0.59 M⊕,
and Md=2.38± 0.71 M⊕). The masses of planets b and d were
further refined by Rice et al. (2019) with new HARPS-N radial
velocity measurements and a Gaussian process informed by the K2
light curve (Mb=4.91± 0.49 M⊕ and Md=4.04± 0.84 M⊕).
Both Prieto-Arranz et al. (2018) and Rice et al. (2019) discuss how
the inner planets have high densities and the outer planet has a
lower density, suggesting that photoevaporation or migration could
have played a role in the evolution of this system; we discuss this
possibility further in Section 6.

1.2. HD 106315

HD 106315 (K2-109) is a bright (V=8.97 mag, K=
7.85 mag) F5 dwarf star hosting two planets discovered in K2
Campaign 10 (Crossfield et al. 2017; Rodriguez et al. 2017).
Planet b is a small (Rb=2.40±0.20 R⊕) planet with an
orbital period of 9.55 days; planet c is a warm Neptune-sized
(Rc=4.379±0.086 R⊕) planet with an orbital period of
21.06 days.
This system was further characterized with HARPS radial

velocity observations by Barros et al. (2017) to determine
the planets’ masses (Mb=12.6± 3.2 M⊕ and Mc=15.2±
3.7 M⊕). They concluded that HD 106315 b likely has a rocky
core and a decent water mass fraction whereas HD 106315 c
has a substantial hydrogen-helium envelope.
Additional transits of HD 106315 c were observed with two

ground-based facilities: the Euler telescope (Lendl et al. 2017)
and the Cerro Tololo Inter-American Observatory (Barros et al.
2017). These measurements improved the precision on both the
orbital period and the time of transit.
Later Zhou et al. (2018) investigated the system architecture

through measuring the obliquity of HD 106315 c using
Doppler tomography and constraining the mutual inclination
of HD 106315 b through dynamical arguments. They found
that these two planets both have low obliquities, consistent with
the few other warm Neptunes with measured obliquities (e.g.,
Albrecht et al. 2013).

2. Spitzer Transits

Predicting precise future transit times becomes harder as
more time elapses from previous transit observations and the
uncertainty from the orbital period compounds. These systems
contain promising targets for future atmospheric follow-up
which require small uncertainties on the predicted transit time.
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Therefore, we collected additional transit observations on the
Spitzer Space Telescope to refine the ephemerides for each
planet as well as to provide a depth measurement at 4.5 μm.
These observations were taken as part of the K2 follow-up
program 13052 (PI: Werner), using the 4.5 μm channel of
IRAC (Fazio et al. 2004). A single transit of each planet was
observed, except for HD 106315 b which was observed twice.
All of the observations were collected with 0.4 second
exposures and the target was placed on the “sweet spot” of
the detector.

We follow a similar analysis approach to that described in
Berardo et al. (2019), which detrends the data using the pixel
level decorrelation method outlined in Deming et al. (2015). In
brief, we first applied a median filter to each pixel in the image
and calculated a background level for each frame by taking the
median of the flux in an annulus centered on the point-spread
function. We estimated the centroid of each frame by fitting a
two-dimensional Gaussian to the image, and obtained a light
curve using a fixed radius aperture. We varied the aperture size
and performed a linear regression to determine the optimal
radius; we found 2.4 pixels minimized the rms of the residuals
for all observations.

We modeled systematics in the light curve by weighting the
nine brightest pixels individually as well as fitting for a
quadratic time ramp. We then chose the combination of pixel
coefficients, aperture size, and time-series binning that resulted
in the smallest rms deviation. We ran a Markov Chain Monte
Carlo (MCMC) analysis to estimate parameter uncertainties,
using the systematic model in addition to a transit signal which
we modeled using batman (Kreidberg 2015). We fixed the
period of each planet to the most recent measurements (Barros
et al. 2017; Rice et al. 2019) and allowed the transit depth,
center, orbital inclination, and semimajor axis to vary. We also
left the uncertainty of the data points as a free parameter, which
we found converged to the rms scatter of the raw light curve.
We held fixed the quadratic limb-darkening parameters, which
were determined using the tables of Claret & Bloemen (2011).
The fit results are shown in Table 1 and Figure 1.

We calculated updated ephemerides (Table 2) to further
refine the time of conjunction and orbital period for future
atmospheric follow-up and to better constrain these values in
our radial velocity fits (Section 5). We fit a straight line to the
transit centers obtained from each individual observation,
incorporating all ground-based published transits thus far
(Lendl et al. 2017; Barros et al. 2017). These planets will be
accessible for future transmission spectroscopy observations
throughout the JWST era. As an example, the transit time
uncertainty in 2025 is under two hours for all five planets (GJ
9827 b: 0.1 hr; GJ 9827 c: 0.5 hr; GJ 9827 d: 0.1 hr; HD
106315 b: 1.7 hr; and HD 106315 c: 0.4hr).

3. Stellar Parameters and Companion Refinement

3.1. Spectroscopy

We collected radial velocity measurements of GJ 9827 and
HD 106315 with the High Resolution Echelle Spectrometer
(HIRES; Vogt et al. 1994) on the Keck I Telescope on
Maunakea. These exposures were taken through an iodine cell
for wavelength calibration (Butler et al. 1996). The HIRES data
collection, reduction, and analysis followed the California
Planet Search method described in Howard et al. (2010).
We obtained 92 measurements of GJ 9827 with HIRES

between 2017 September 22 and 2020 January 8 (Table 3).
These data were collected with the C2 decker (14″×0 861,
resolution=50 k) with a typical signal-to-noise ratio (S/N) of
200/pixel (250k on the exposure meter, median exposure time
of 18.5 minutes). We also collected a higher resolution
template observation with the B3 decker (14″×0 574,
resolution=67 k) on 2017 December 30 with an S/N of
200/pixel without the iodine cell. Both the C2 and B3 decker
allow for sky subtraction, which is important for the quality of
the radial velocities for a V=10 mag star. We included an
additional 142 measurements in our GJ 9827 analysis, for a
total of 234 measurements: 7 from FIES (Niraula et al. 2017),
36 from PFS (Teske et al. 2018), 35 from HARPS (Prieto-
Arranz et al. 2018), and 64 from HARPS-N (Prieto-Arranz
et al. 2018; Rice et al. 2019).
We obtained 352 measurements of HD 106315 with HIRES

between 2016 December 23 and 2020 February 1 (Table 4); 53
of these observations were previously published in Crossfield
et al. (2017). These data were collected with the B5 decker
(3 5×0 861, resolution=50 k) with a typical S/N of 200/
pixel (250k on the exposure meter, median exposure time of
4.8 minutes). Data were typically taken in groups of three
consecutive observations to mitigate p-mode oscillations;
Barros et al. (2017) estimated p-mode periods of ∼20 minutes
whereas Chaplin et al. (2019) estimate timescales to be ∼30
minutes. When possible, multiple visits separated by an hour
were taken to improve precision due to the high v isin ; these
data were then binned in nightly bins to average over short-
timescale activity. We also collected a higher resolution
template observation with the B3 decker on 2016 December
24. The template was a triple exposure with a total S/N of 346/
pixel (250k each on the exposure meter) without the iodine cell.
We obtained 25 measurements of HD 106315 with PFS

between 2017 January 6 and 2018 June 30 (Table 4). Data
taken prior to 2018 February were taken with the 0 5 slit
(resolution∼80k); a single observation with an exposure time
of 10 to 25 minutes was taken per night. After a PFS upgrade in
2018 February, multiple exposures were taken with the 0 3 slit
(resolution ∼130k). As with the HIRES data, we binned these
consecutive observations for our analysis. An iodine-free

Table 1
Spitzer Transit Results

Planet Date (UT) Time of Conjunction (BJD) Rp/R* (4.5 μm) Semimajor Axis (R*) Inclination (°) Uncertainty (dex)

GJ 9827 b 2018 Mar 10 -
+2457738.82384 0.00080

0.00081
-
+0.0225 0.0017

0.0018
-
+7.19 0.40

0.56
-
+87.7 1.6

1.8 - -
+3.152 0.012

0.012

GJ 9827c 2018 Mar 6 -
+2457742.1993 0.0028

0.0025
-
+0.0201 0.0020

0.0023
-
+13.0 1.3

1.7
-
+88.5 1.1

1.4 - -
+3.307 0.017

0.015

GJ 9827 d 2018 Mar 28 -
+2457740.98800 0.00055

0.00064
-
+0.0348 0.0013

0.0014
-
+21.8 1.6

2.5
-
+87.72 0.21

0.37 - -
+3.295 0.018

0.017

HD 106315 b 2017 Apr 19 -
+2457586.5394 0.0109

0.0056
-
+0.0201 0.0024

0.0026
-
+16.4 3.1

5.1
-
+88.4 1.1

2.3 - -
+3.197 0.013

0.013

HD 106315 b 2017 Sep 10 -
+2457586.5826 0.0043

0.0121
-
+0.0219 0.0026

0.0034
-
+10.4 1.3

2.2
-
+87.6 1.7

3.0 - -
+3.155 0.010

0.010

HD 106315 c 2017 Apr 20 -
+2457569.0103 0.0012

0.0012
-
+0.0329 0.0012

0.0013
-
+29.5 4.2

5.7
-
+88.89 0.51

0.69 - -
+3.189 0.012

0.012
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template, consisting of three 1000 s exposures, was taken with
the 0 3 slit on 2018 June 27. The PFS data were reduced using
a custom IDL pipeline and velocities extracted based on the
methodology described in Butler et al. (1996).

We additionally include 84 measurements from HARPS
(Barros et al. 2017), for a total of 461 measurements (160
binned points) in our HD 106315 analysis. We collected 125
measurements on the Automated Planet Finder (APF; Radovan
et al. 2014; Vogt et al. 2014) but do not include them in the

analysis due to the high scatter (30 m s−1 nightly rms, 7.3 m s−1

radial velocity uncertainty), listed in Table 4.
We updated the stellar parameters for GJ 9827 and HD

106315 to incorporate the latest measurements, especially the
Gaia DR2 parallaxes (Gaia Collaboration et al. 2016, 2018; Luri
et al. 2018). We used multiband stellar photometry (Gaia G and
Two Micron All-Sky Survey JHK), the Gaia parallax, and a
stellar effective temperature and metallicity derived from Keck/
HIRES spectra via the SpecMatch-Emp tool (Yee et al. 2017).
The SpecMatch-Emp values are Teff=6318±110 K and
4195±70K, and [Fe/H]=−0.21±0.09 and −0.29±0.09
for HD 106315 and GJ 9827, respectively. We input the above
values into the isoclassify tool using the grid-mode option
(Huber et al. 2017) to derive the stellar parameters listed in
Table 5.

3.2. HD 106315 Imaging

The discovery papers for HD 106315 included seeing-
limited imaging data and K-band Keck/NIRC2 infrared
adaptive optics imaging to rule out nearby stellar companions

Figure 1. Spitzer transits for GJ 9827 b, c, and d and HD 106315 b and c. The
data (black points), binned data (red circles), and model fit (blue line) are
shown.

Table 2
Ephemerides Update

Planet Time of Conjunction (BJD) Period (days)

GJ 9827 b 2457738.82586±0.00026 1.2089765±2.3e-06
GJ 9827c 2457742.19931±0.00071 3.648096±2.4e-05
GJ 9827 d 2457740.96114±0.00044 6.20183±1.0e-05
HD 106315 b 2457586.5476±0.0025 9.55287±0.00021
HD 106315c 2457569.01767±0.00097 21.05652±0.00012

Table 3
GJ 9827 Radial Velocities

Time
Radial
Velocity

Radial
Velocity
Unc. SHK H-alpha Instrument

(BJDTDB) (m s−1) (m s−1)

2458787.89755 4.67 1.16 0.5741 0.05581 HIRES
2458118.80405 −0.01 1.08 0.7945 0.05629 HIRES

Note. HIRES SHK values have an uncertainty of 0.001.

(This table is available in its entirety in machine-readable form.)

Table 4
HD 106315 Radial Velocities

Time
Radial
Velocity

Radial
Velocity
Unc. SHK H-alpha Instrument

(BJDTDB) (m s−1) (m s−1)

2457746.13882 −6.58 4.11 0.1392 0.03299 HIRES
2457746.14353 −3.36 4.01 0.1391 0.03294 HIRES
2457759.80567 26.08 6.79 0.1515 L PFS
2457761.81934 −2.24 7.28 0.1556 L PFS
2457781.06111 −5.04 13.21 0.1291 L APF
2457809.02734 −30.19 22.39 0.1200 L APF

Note. SHK values have an uncertainty of 0.001 for HIRES data, 0.002 for APF
data, and no calculated uncertainties for PFS data.

(This table is available in its entirety in machine-readable form.)
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(Rodriguez et al. 2017; Crossfield et al. 2017). We include here
additional high-contrast imaging data to improve the magnitude
contrast constraints on nearby companions.

We observed HD 106315 on 2019 June 20 UT using the
Zorro speckle interferometric instrument37 mounted on the 8 m
Gemini South telescope located on the summit of Cerro Pachon in
Chile. Zorro simultaneously observes in two bands, one centered at
832 nm with a width of 40 nm and the other centered at 562 nm
with a width of 54 nm, obtaining diffraction-limited images with
inner working angles 0 017 and 0 026, respectively. Our data set
consisted of 3 minutes of total integration time taken as sets of
1000×0.06 sec images. All the images were combined and
subjected to Fourier analysis leading to the production of final data
products including speckle reconstructed imagery (see Howell
et al. 2011). Figure 2 shows the 5σ contrast curves in both filters
for the Zorro observation and includes an inset showing the
832 nm reconstructed image. The speckle imaging results confirm
HD 106315 to be a single star to contrast limits of 5–8.6
magnitudes, ruling out main-sequence companions fainter than HD
106315 itself within the spatial limits of 2 to 125 au.

4. Stellar Activity Analysis

Variability in the brightness and velocity fields across the
stellar disk results in line shape variations and apparent radial
velocity shifts. Stellar activity with timescales comparable to
planet orbital periods is a particular problem for radial
velocity analyses as these signals can appear as additional
Keplerian signals or can affect the fit amplitudes of the planet
signals (e.g., Fulton et al. 2015). For our two systems, we
focus on the component of stellar activity related to stellar
rotation, as these signals have similar timescales to the
transiting planet signals.

Stellar activity can be tracked in radial velocity data using
certain stellar lines as activity indicators. The Calcium II H&K
lines are often used for this purpose (SHK; Isaacson &
Fischer 2010), whereas Hα may be more successful for cooler
stars (Robertson et al. 2013). Another method is to use
photometry to characterize the stellar activity and then
subsequently fold the activity information into radial velocity
fits (Haywood et al. 2014). For the Sun, there is a connection
between stellar activity information derived from photometry,
activity indicators, and radial velocity data (Kosiarek &
Crossfield 2020). Here we investigate how stellar activity
manifests in the K2 light curve, the Calcium II H&K and Hα
stellar lines, and our radial velocity data.

4.1. GJ 9827 Stellar Activity

The K2 light curve for GJ 9827 shows quasi-periodic
variation with signs of active region evolution between rotation

cycles (Figure 3). The K2 photometry shown in this paper was
produced using k2phot (Petigura et al. 2015, 2017). A Lomb–
Scargle periodogram of the K2 data shows two strong peaks
around 15 and 30 days consistent with previous works, one
peak is likely the rotation period and the other a harmonic. We
consider both peaks since stellar rotation periods often do not
appear as the highest peak in a periodogram (Nava et al. 2020).
The shorter period is favored by Niraula et al. (2017) from the
v isin measurement, whereas the longer period is favored by
Rodriguez et al. (2018), Teske et al. (2018), Prieto-Arranz et al.
(2018), and Rice et al. (2019) from a combination of
periodogram, autocorrelation, and Gaussian process analyses
on the light curve as well as from the inferred age of GJ 9827.
The Keck/HIRES SHK and radial velocity data shown in

Figure 3 both reveal a tenuous stellar rotation signal at 30 days,
consistent with the longer peak in the K2 light curve
periodogram. In agreement with previous findings, we
conclude that this 30 day signal is likely caused by stellar
rotation, as it is present in both the SHK data and the
photometry. Since there is power at the same period in our
radial velocity data, we need to account for this signal in our
radial velocity analysis in order to derive accurate mass
measurements for the planets. We mitigated this signal using a
Gaussian process, as described below in Section 5.1.

4.2. HD 106315 Stellar Activity

Similar to GJ 9827, we aim to understand the stellar activity
component of the radial velocity data through investigating the
possible relationships between the K2 light curve, the Calcium II
H&K, and Hα stellar lines, and our radial velocity data. The
projected rotational velocity measurement ( = v isin 13.2
1km s−1) combined with the obliquity measurement (λ=
−10.9±3.7; Zhou et al. 2018) suggest a stellar rotation period
of 4.78±0.15 days.
HD 106315 was observed in K2 Campaign 10; this

campaign had a 14 day data gap resulting in 49 days of
contiguous data. With a 4.8 day rotation period, the shorter
campaign should not impact our conclusions about stellar
activity from this photometry. The K2 light curve (Figure 4)

Table 5
Stellar Parameters

Parameter Units GJ 9827 HD 106315

[Fe/H] dex −0.26±0.08 −0.22±0.09
M* MSun 0.593±0.018 1.154±0.042
R* RSun 0.579±0.018 1.269±0.024
log g dex 4.682±0.021 4.291±0.025
Teff K 4294±52 6364±87

Figure 2. Gemini-S/Zorro speckle-imaging contrast curve for HD 106315 in
832 nm (red) and 562 nm (blue) including an inset image of the 832 nm
observation. No stellar companions or background sources are seen in
these data.

37 https://www.gemini.edu/sciops/instruments/alopeke-zorro/
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has low photometric variability; the periodogram shows a small
peak near the stellar rotation period at 4.8 days and a larger
peak at the second harmonic of the rotation period at 9.6 days.

We next investigated the potential radial velocity signal from
the stellar rotation by examining the SHK and Hα data in the
HIRES spectra (Table 4). We find no significant peaks near 4.8
days or elsewhere in the Lomb–Scargle periodograms of the
HIRES activity indicators and radial velocity data (Figure 4).
The absence of these signals suggests that the stellar rotation is
not contributing a significant stellar activity signal to the radial
velocity measurements, potentially attributed to the low spot
coverage of this F star (<1%; Kreidberg et al. 2020).

4.3. Ground-based Photometry

Stellar photometry of both systems was collected from the
Fairborn Observatory in Arizona to lengthen the photometry
baseline from which to look for stellar variability.

Photometry of GJ 9827 was collected with the Tennessee
State University Celestron C14 0.36 m Automated Imaging
Telescope (AIT; Henry 1999; Eaton et al. 2003). A total of 74

Figure 3. Activity analysis for GJ 9827 from K2 photometry and HIRES
spectroscopy. There are clear stellar rotation and active region evolution signals
visible by eye in the K2 photometry. The Lomb–Scargle periodograms of
the K2 photometry, SHK, Hα, and radial velocity data include false-alarm
probabilities of 0.5, 0.1, and 0.01 (horizontal lines), stellar rotation (blue
shaded area), and planet orbital periods (dashed lines). There is a stellar rotation
signal at 30 days in the SHK and radial velocity data, consistent with the broad
peak in the K2 photometry.

Figure 4. Activity analysis for HD 106315 from K2 photometry and HIRES
spectroscopy. The Lomb–Scargle periodograms of the photometry, SHK, Hα,
and radial velocity data include false-alarm probabilities of 0.5, 0.1, and 0.01
(horizontal lines), stellar rotation period (thick blue line), and planet orbital
periods (dashed lines). There are peaks near the rotation period and second
harmonic in the K2 photometry, and we find no similar peaks in the HIRES
activity indicators or radial velocity data.

Table 6
GJ 9827 Photometry

Time (HJD) ΔRC (mag)

2458384.8398 −3.29860
2458387.7886 −3.29043

(This table is available in its entirety in machine-readable form.)

Table 7
HD 106315 Photometry

Time (HJD) Δ((b + y)/2 (mag)

2458159.9462 1.58370
2458161.9455 1.58287

(This table is available in its entirety in machine-readable form.)
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observations were collected from 2018 September 22 to 2020
January 27 with the Cousins R filter (Table 6). The differential
magnitudes were computed by subtracting the average
brightness of seven comparison stars in the same field of
view. A frequency spectrum of the observations show no
significant periodicities between 1 and 100 days; the

observations scatter about their mean with a standard
deviation of 0.00372mag.
Photometry of HD 106315 was collected with the T12

0.80m Automatic Photoelectric Telescope (APT); the T12
APT is essentially identical in construction and operation to the
T8 0.8m APT described in Henry (1999). A total of 43

Table 8
GJ 9827 Radial Velocity Fit Parameters

Parameter Name (Units) Keplerian Fit Gaussian Process Fit (Adopted)

Orbital Parameters
Pb Period (days) - -

+ -1.2089765 e
e

2.3 06
2.2 06 1.2089765±2.3e−06

Tconjb Time of Conjunction (BJD) 2457738.82586±0.00026 2457738.82586±0.00026
Rb Radius (R⊕) ≡1.529±0.058 ≡1.529±0.058
eb Eccentricity ≡0.0 ≡0.0
ωb Argument of Periapse ≡0.0 ≡0.0
Kb Semi-amplitude (m s−1) 3.5±0.32 4.1±0.3
ab Semimajor Axis (AU) 0.01866±0.00019 0.01866±0.00019
Mb Mass (M⊕ ) -

+4.12 0.38
0.39 4.87±0.37

ρb Density (g cm−3) -
+6.32 0.87

1.0
-
+7.47 0.95

1.1

Pc Period (days) - -
+ -3.648095 e

e
2.4 05
2.5 05 3.648095±2.4e−05

Tconjc Time of Conjunction (BJD) 2457742.19927±0.00071 -
+2457742.19929 0.00071

0.00072

Rc Radius (R⊕) ≡1.201±0.046 ≡1.201±0.046
ec Eccentricity ≡0.0 ≡0.0
ωc Argument of Periapse ≡0.0 ≡0.0
Kc Semi-amplitude (m s−1) 1.28±0.32 1.13±0.29
ac Semimajor Axis (AU) -

+0.03896 0.0004
0.00039

-
+0.03896 0.0004

0.00039

Mc Mass (M⊕ ) -
+2.17 0.55

0.54 1.92±0.49

ρc Density (g cm−3) -
+6.9 1.8

2.0
-
+6.1 1.6

1.8

Pd Period (days) 6.20183±1e−05 6.20183±1e−05
Tconjd Time of Conjunction (BJD) 2457740.96114±0.00044 -

+2457740.96114 0.00044
0.00045

Rd Radius (R⊕) ≡1.955±0.075 ≡1.955±0.075
ed Eccentricity ≡0.0 ≡0.0
ωd Argument of Periapse ≡0.0 ≡0.0
Kd Semi-amplitude (m s−1) 1.63±0.31 1.7±0.3
ad Semimajor Axis (AU) -

+0.0555 0.00057
0.00056

-
+0.0555 0.00057

0.00055

Md Mass (M⊕ ) 3.29±0.64 3.42±0.62
ρd Density (g cm−3) -

+2.41 0.52
0.58

-
+2.51 0.51

0.57

Instrument Parameters
gHIRES Mean Center-of-mass (m s−1) - -

+1.87 0.39
0.38 - -

+2.4 1.4
1.3

γHARPS Mean Center-of-mass (m s−1) 31946.64±0.37 -
+31947.7 3.6

4.0

γHARPS−N Mean Center-of-mass (m s−1) -
+31948.64 0.42

0.43
-
+31950.2 2.6

2.7

γPFS Mean Center-of-mass (m s−1) 0.28±0.86 0.6±1.2
γFIES Mean Center-of-mass (m s−1) -

+31775.5 1.2
1.1 31775.6±1.5

sHIRES Jitter (m s−1 ) -
+3.45 0.27

0.32
-
+2.15 0.43

0.49

σHARPS Jitter (m s−1 ) -
+1.65 0.35

0.39
-
+0.91 0.45

0.44

σHARPS−N Jitter (m s−1 ) -
+2.79 0.35

0.39
-
+0.74 0.45

0.44

σPFS Jitter (m s−1 ) -
+4.68 0.62

0.75 4.0±1.1

σFIES Jitter (m s−1 ) -
+0.0001 0.0001

0.0016
-
+0.035 0.035

2.6

GP Parameters
h1,HIRES GP Amplitude (m s−1 ) N/A -

+3.7 1.0
1.2

η1,HARPS GP Amplitude (m s−1 ) N/A -
+5.3 2.2

3.5

η1,HARPS−N GP Amplitude (m s−1 ) N/A -
+5.1 1.5

2.3

η1,PFS GP Amplitude (m s−1 ) N/A 4.0±1.1
η1,FIES GP Amplitude (m s−1 ) N/A -

+0.035 0.035
2.6

η2 Evolutionary Timescale (days) N/A -
+82 14

17

η3 Period of the Correlated Signal (days) N/A -
+28.62 0.38

0.48

η4 Length Scale N/A -
+0.418 0.065

0.082

Note. Derived parameters use M*=0.593±0.018, R*=0.579±0.019 (this work), Rb/R*=0.02420±0.00044, Rc/R*=0.01899±0.00036, and
Rd/R*=0.03093±0.00062 (Rodriguez et al. 2018).
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observations of HD 106315 were collected between 2018
February 9 and 2018 June 7 in both the Stromgren b and y
filters by T12ʼs two-channel photometer (Table 7). The two
filters were averaged together into the (b+y)/2 filter to
increase the data precision. The differential magnitudes were
calculated using three comparison stars: HD 105374, HD
105589, and HD 106965. A frequency spectrum of the
observations show no significant periodicities between 1 and
100 days; the observations scatter about their mean with a
standard deviation of 0.00256mag.

5. Radial Velocity Analysis

We analyzed the radial velocity data for these two
systems with radvel38 (Fulton et al. 2018). radvel models
Keplerian orbits and optional Gaussian processes to fit radial
velocity data. The fit is performed through a maximum-
likelihood function and errors are determined with an MCMC
analysis. We use the default number of walkers, number of
steps, and criteria for burn-in and convergence as described in
Fulton et al. (2018).
For both systems, we first model the radial velocity data

including circular Keplerian orbits for all of the transiting
planets; we include a Gaussian prior on the orbital period (P)
and time of transit (Tconj) from our updated ephemerides in
Section 2. The semi-amplitudes (K ) reported from these
analyses refer to the motion of the star induced by the orbiting
planet. Afterwards, we test models including a trend ( g),
curvature ( ̈g), and planet eccentricities (e, ω). We used the
Akaike information criterion corrected for small samples sizes
(AIC) to evaluate if the fit improved sufficiently to justify the
additional free parameters; a lower AIC indicates an
improved fit.

5.1. Radial Velocity Analysis for GJ 9827

There is evidence of stellar activity in our radial velocity data
from the periodogram analysis in Section 4. We include a
Gaussian process with a quasi-periodic kernel to model this
activity signal in our radial velocity fit. The kernel has the form

( ) ( ) ( )
( )⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎜ ⎟⎛
⎝

⎞
⎠h

h
¢ = -

- ¢
-

h

p
h
- ¢

k t t
t t

, exp , 11
2

2

2
2

sin

2

t t2

3

4
2

where the hyperparameter η1 is the amplitude of the covariance
function, η2 is the active region evolutionary timescale, η3 is
the period of the correlated signal, and η4 is the length scale of
the periodic component. We explore these hyperparameters for
this system by performing a maximum-likelihood fit to the K2
light curve, SHK, and Hα data with the quasi-periodic kernel
(Equation (1)), then determine the errors through an MCMC
analysis.
The K2 light curve fit is well constrained by the Gaussian

process and produces a stellar rotation period consistent with
the periodogram analysis of this data (η3= -

+28.62 0.38
0.48). The

Hα data has very low variation; it is not well fit by this kernel
and does not produce meaningful posteriors.
The SHK data is well fit by this quasi-periodic kernel and

produces a stellar rotation period (η3) consistent with our
periodogram analysis in Section 4. The photometry and the SHK
data both produce consistent posteriors; we choose to adopt the
posteriors from the SHK fit because these data are taken
simultaneously with the radial velocity data and are therefore a
direct indicator of the chromospheric magnetic activity. The
posteriors on the parameters from our SHK fit are: gSHK

=

-
+0.646 0.026

0.027, sSHK = -
+0.0183 0.0032

0.0035, η1= -
+0.079 0.012

0.017, η2= -
+94 25

50

days, η3= -
+29.86 0.83

0.78 days, and η4= -
+0.587 0.096

0.14 .
We then performed a Gaussian process fit on the radial

velocity data including priors on η2, η3, and η4 equivalent to the
SHK fit posteriors. We tested fits including a trend, curvature,
and planet eccentricities but reject all of these models due to

Figure 5. Best-fit three-planet Keplerian orbital model with a Gaussian process
for GJ 9827. The thin blue line is the best-fit one-planet model with the mean
Gaussian process model; the colored area surrounding this line includes the 1σ
maximum-likelihood Gaussian process uncertainties. We add in quadrature the
radial velocity jitter terms listed in Table 8 with the measurement uncertainties
for all radial velocities. (b) Residuals to the best-fit two-planet model. (c)
Radial velocities phase-folded to the ephemeris of planet b; the Keplerian orbit
models for the other planets have been subtracted. Red circles are the same
velocities binned in 0.08 units of orbital phase. (d) Radial velocities phase-
folded to the ephemeris of planet c. (e) Radial velocities phase-folded to the
ephemeris of planet d.

38 https://radvel.readthedocs.io/
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their higher AIC values. These tested fits resulted in semi-
amplitudes for all three planets consistent to 1σ for planets b
and d, and 2σ for planet c with the circular three-planet
Gaussian process fit.

We present our GJ 9827 results in Table 8. We list the results
from a circular three-planet case with and without a Gaussian
process for comparison, and adopt the fit including the
Gaussian process shown in Figure 5. We measure masses for
these planets to be Mb=4.87±0.37 M⊕, Mc=1.92±0.49
M⊕, and Md=3.42±0.62 M⊕.

5.2. Radial Velocity Analysis for HD 106315

For HD 106315, the circular two-planet fit is favored by the
AIC over fits with a trend, curvature, or planet eccentricities;
results are listed in Table 9 and the fit is displayed in Figure 6.
In agreement with Barros et al. (2017), we do not see evidence
of the trend suggested in Crossfield et al. (2017) with an AIC
value 1.25 larger than the circular case. We determine masses
for the HD 106315 system to be Mb=10.5±3.1 M⊕ and
Mc=12.0±3.8 M⊕.

In contrast with our GJ 9827 analysis, we choose not to
include a Gaussian process in our HD 106315 fit as we do not
see evidence for stellar rotation induced activity contamination
in the activity indicators or radial velocity data. We suspect the
low spot coverage of HD 106315(<1%; Kreidberg et al. 2020)
is why we see a small rotation signal in the photometry and a
lack of this signal in our radial velocity data.
Barros et al. (2017) do use a Gaussian process for their

analysis of HD 106315. The derived Gaussian process period is
2.8 days and their FWHM measurements also show a similar
periodicity leading them to believe that this signal arises from
stellar activity. At the time, Zhou et al. (2018) had not yet
measured the obliquity, therefore, Barros et al. (2017)
hypothesized that this 2.8 day signal was the stellar rotation
period or half of the rotation period.
If this signal is associated with stellar activity, it is possible

that their high-cadence radial velocity run is more sensitive to
this activity than our data collection spanning multiple years.
The HARPS measurements were collected on 47 nights over
three months, whereas we have 94 nights of HIRES measure-
ments over three years. It is also possible that the Gaussian

Table 9
HD 106315 Radial Velocity Fit Parameters

Parameter Name (Units) Keplerian Fit (Adopted) Gaussian Process Fit

Orbital Parameters
Pb Period (days) 9.55288±0.00021 -

+9.55288 0.00021
0.00019

Tconjb Time of Conjunction (BJD) -
+2457586.5476 0.0025

0.0024
-
+2457586.5479 0.0026

0.003

Rb Radius (R⊕) ≡2.40±0.20 ≡2.40±0.20
eb Eccentricity ≡0.0 ≡0.0
ωb Argument of Periapse ≡0.0 ≡0.0
Kb Semi-amplitude (m s−1) -

+2.88 0.84
0.85

-
+2.91 0.85

0.79

ab Semimajor Axis (AU) -
+0.0924 0.0012

0.0011
-
+0.0924 0.0012

0.0011

Mb Mass (M⊕ ) 10.5±3.1 -
+10.6 3.1

2.9

ρb Density (g cm−3) -
+4.1 1.4

1.9
-
+4.1 1.4

1.8

Pc Period (days) 21.05652±0.00012 21.05653±0.00012
Tconjc Time of Conjunction (BJD) -

+2457569.01767 0.00096
0.00097

-
+2457569.0178 0.001

0.0012

Rc Radius (R⊕) ≡4.379±0.086 ≡4.379±0.086
ec Eccentricity ≡0.0 ≡0.0
ωc Argument of Periapse ≡0.0 ≡0.0
Kc Semi-amplitude (m s−1) 2.53±0.79 -

+2.61 0.87
0.74

ac Semimajor Axis (AU) -
+0.1565 0.002

0.0019
-
+0.1565 0.002

0.0019

Mc Mass (M⊕ ) 12.0±3.8 -
+12.4 4.2

3.5

ρc Density (g cm−3) -
+0.78 0.25

0.26
-
+0.81 0.27

0.24

Instrument Parameters
gHIRES Mean Center-of-mass (m s−1) - -

+2.48 0.97
0.96 - -

+2.7 1.1
1.0

γHARPS Mean Center-of-mass (m s−1) - -
+3462.94 0.71

0.7 - -
+3462.77 0.87

1.1

γPFS Mean Center-of-mass (m s−1) - -
+2.9 2.7

2.8 - -
+2.5 3.3

3.2

sHIRES Jitter (m s−1 ) -
+8.33 0.79

0.85
-
+6.4 1.1

1.2

σHARPS Jitter (m s−1 ) -
+2.94 1.0

0.94
-
+2.3 1.4

1.0

σPFS Jitter (m s−1 ) -
+9.4 2.3

2.6
-
+4.0 2.7

4.6

GP Parameters
h1,HIRES GP Amplitude (m s−1 ) N/A -

+5.2 1.7
1.1

η1,HARPS GP Amplitude (m s−1 ) N/A -
+2.3 1.4

1.0

η1,PFS GP Amplitude (m s−1 ) N/A -
+4.0 2.7

4.6

η2 Evolutionary Timescale (days) N/A -
+5.27 0.65

0.54

η3 Period of the Correlated Signal (days) N/A -
+4.5 0.65

0.49

η4 Length Scale N/A -
+0.56 0.04

0.036

Note. Derived parameters use M*=1.154±0.043, R*=1.269±0.024 (this work), Rb/R*=0.01708±0.00135 (Crossfield et al. 2017), and
Rc/R*=0.031636±0.0001834 (Kreidberg et al. 2020).
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process used by Barros et al. (2017) had fit spurious noise
instead of a stellar activity signal; the 2.8 day signal is too short
to be the rotation period or half of the rotation period. Hotter
stars (Teff>6200 K) often have shallow convective envelopes
and inefficient magnetic dynamos which result in fewer spots on
the stellar surface (Kraft 1967). Therefore, hotter stars like HD
106315 may not have enough starspots for this type of Gaussian
process to be effective.

For completeness, we perform a Gaussian process fit on the
HD 106315 radial velocity data. We first fit the K2 data using a
Gaussian process as this data set showed periodicity at the stellar
rotation period; the posteriors of this fit are: γK2= -

+3633710 200
190

e− s−1, σK2= -
+117 15

16 e− s−1, η1= -
+655 68

84 e− s−1, η2=

-
+5.17 0.64

0.66 days, η3= -
+4.49 0.26

0.61 days, and η4= -
+0.55 0.044

0.04 . We
then performed a Gaussian process fit on the radial velocity data
including priors on η2, η3, and η4 from the K2 fit posteriors. This
fit results in semi-amplitudes consistent to 1σ for both planets;
the full results are shown in Table 9. The Gaussian process fit
has a higher AIC value (ΔAIC=7.38) suggesting that Gaussian
process parameters do not significantly improve the fit. For this

reason, and as we do not see signs of stellar activity in our
activity indicators or radial velocity data, we adopt the fit without
a Gaussian process.

5.3. Eccentricity Constraints

We explored the range of planet eccentricities consistent with
system stability through N-body simulations as including
eccentricity was not warranted in our radial velocity fits for
either system. The literature on GJ 9827 assumed circular orbits
for their fits (Prieto-Arranz et al. 2018; Rice et al. 2019). For HD
106315, Barros et al. (2017) include eccentricity terms in their
radial velocity analysis resulting in eb=0.1±0.1 and
ec=0.22±0.15, although they do not discuss if including
the eccentricity terms improve the fit. Our eccentric radial
velocity fit for HD 106315 resulted in eb=0.18±0.17 and
ec=0.21±0.24, consistent with Barros et al. (2017). Though
our eccentric fit had a higher AIC than the circular fit
(ΔAIC=6.22) suggesting that including eccentricity did not
sufficiently improve the fit to justify the additional parameters.
We evaluated the stability of both systems using spock

(Tamayo et al. 2020). spock predicts whether a given orbital
configuration is stable by using rebound (Rein & Liu 2011)
to simulate the first 104 orbits of a system and then calculating
the probability that this system is stable for a full 109 orbits by
comparing it to a wide sample of full simulations. These full
simulations include mean-motion resonance and mutually
inclined and eccentric systems; the parameters are drawn from
those typically encountered in current multiplanet systems.
We initialized both systems at the maximum-likelihood values

for the planet masses, orbital periods, times of conjunction, and
stellar masses derived in this paper. We then varied e and ω for
all planets to explore the stability of the system. For HD 106315,
we varied e1 and e2 from 0.0 to 0.9 in steps of 0.1. At each
eccentricity pair, we performed a grid of simulations varying ω1

and ω2 from zero to 2π in steps of p
5
, resulting in 10,000

simulations. We then averaged over the simulated ω grid to

Figure 6. Best-fit two-planet Keplerian orbital model for HD 106315. The thin
blue line is the best-fit two-planet model. We add in quadrature the radial
velocity jitter terms listed in Table 9 with the measurement uncertainties for all
radial velocities. (b) Residuals to the best-fit two-planet model. (c) Radial
velocities phase-folded to the ephemeris of planet b with the orbit model of
planet c subtracted. Red circles are the same velocities binned in 0.08 units of
orbital phase. (d) Radial velocities phase-folded to the ephemeris of planet c.

Figure 7. Probability of stability for the HD 106315 system. We examined the
effect of planet eccentricity on the system’s stability using spock. For each
pair of eccentricities, we vary ω1 and ω2 from zero to 2π. The color of the box
displays the average probability of stability across all ω.
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calculate the average probability that a given eccentricity pair is
stable (Figure 7).

HD 106315 b and HD 106315 c are in relatively close orbits
at periods of 9.55 and 21.06 days; their orbits are unstable if
either planet has a large eccentricity. The system has a
probability of stability greater than 50% when e1� 0.4 and
e2� 0.3; the highest probability of stability is when both
planets are in circular orbits.

GJ 9827 b, GJ 9827 c, and GJ 9827 d are in even more
closely packed orbits at orbital periods of 1.2, 3.6, and 6.2
days. Therefore, for GJ 9827, we varied e1, e2, and e3 from 0.0
to 0.4 in steps of 0.1 as larger eccentricities for any of the three
planets resulted in unstable orbits. At each eccentricity triplet
we perform a grid of simulations varying ω1, ω2, and ω3 from
zero to 2π in steps of p

5
, creating a total of 125,000 simulations.

We then averaged over the ω grid to calculate the average
probability that a given eccentricity triplet is stable (Figure 8).
We find that the GJ 9827 system is unstable if e3� 0.3 and

the system has very low stability at e3=0.2. For e3� 0.1, the
system can be stable with e2� 0.2 and e1� 0.4. This system
has a smaller range of stable eccentricity values since the
planets are packed closer together.
We then convert these eccentricity constraints to secondary

eclipse timing constraints (Winn 2010, Equation (33)). We note
that the planets in these two systems are not particularly
favorable targets for thermal emission spectroscopy based on
the emission spectroscopy metric (ESM; Kempton et al. 2018;
HD 106315 b: 3; HD 106315 c: 6; GJ 9827 b: 14; GJ 9827 c: 4;
and GJ 9827 d: 6).
From our eccentricity constraints and assuming ω=0, the

maximum offsets of the secondary eclipse time for HD 106315
b and HD 106315 c are 2.4 days and 4.0 days respectively. The
maximum secondary eclipse timing offsets for the GJ 9827
system are 0.31 days, 0.46 days, and 0.39 days for planet b, c,
and d respectively.

6. Interior Bulk Compositions

To explore the interior compositions of these planets, we first
visually compare their masses and radii to other known
exoplanets on a mass–radius diagram (Figure 9). GJ 9827 b
(ρb=7.5 g cm−3) and GJ 9827 c (ρc=6.1 g cm−3) are both
consistent with a 50/50 mixture of rock and iron. GJ 9827 d
(ρd=2.5 g cm−3) and HD 106315 b (ρb=4.1 g cm−3) are
consistent with either 100% water or a rocky core with a 1%
H/He envelope. Lastly, HD 106315 c (ρc=0.8 g cm−3) is
located near our solar system ice giant planets. It has a much
lower density than HD 106315 b, too low to be explained by
water alone, and is consistent with having a >10% H/He
envelope.
To further investigate the interior compositions of these

planets, we compared their masses and radii with model
composition grids from Zeng & Sasselov (2013), Lopez &
Fortney (2014), and Zeng et al. (2016). We focus on two main
compositions: Earth-like rock and iron cores surrounded by
H/He envelopes and mixtures of water, rock, and iron. Our
results are tabulated in Table 10.
To calculate potential H/He mass fractions, we use the grids

of thermal evolution models provided by Lopez & Fortney
(2014) which calculate the radius of a planet given varying
incident fluxes relative to Earth (Sinc/S⊕), masses (Mp/M⊕),
ages, and fractions fHHe of their masses contained in H/He
envelopes surrounding Earth-like rock and iron cores. We use
the smint (Structure Model INTerpolator) interpolation and

Figure 8. Probability of stability for the GJ 9827 system. We examined the effect of planet eccentricity on the system’s stability using spock. For each triplet of
eccentricities, we vary ω1, ω2, and ω3 from zero to 2π. The color of the box displays the average probability of stability across all ω.

Figure 9. Mass–radius diagram for planets between the size of Earth and
Neptune with greater than 2σ measurements (darker points for lower error).
The lines show models of different compositions (Lopez & Fortney 2014; Zeng
et al. 2016). Our five planets are shown as red stars with 1σ uncertainties.

Table 10
Hydrogen/Helium and Water Mass Fraction Surrounding an Earth-like Core

Planet fHHe (%) fH O2
(%)

GJ 9827b -
+0.02 0.01

0.01
-
+2.20 1.69

3.84

GJ 9827c -
+0.01 0.00

0.01
-
+13.57 10.40

25.18

GJ 9827d -
+0.54 0.17

0.20
-
+79.10 20.14

14.35

HD 106315b -
+0.96 0.51

0.72
-
+54.29 30.09

29.06

HD 106315c -
+12.74 1.06

1.11
-
+99.27 1.25

0.57
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envelope mass fraction fitting package, which we made
publicly available on GitHub39, in order to solve the inverse
problem of inferring a planet’s envelope mass fraction from its
incident flux, mass, age, and radius.

smint performs linear interpolation over a grid of fHHe,
ÅM Mlog p10 , system age, and ÅS Slog inc10 , and returns the

corresponding planet radius. We then run an MCMC that fits for

the combination of Sinc, Mp, age, and fHHe that best matches the
observed planet radius. We adopt Gaussian priors on Sinc and Mp

informed by the stellar and planetary parameters. We use a
uniform prior on the planet’s envelope mass fraction over the
range spanned by the Lopez & Fortney (2014) grids (from 0.1 to
20%) and adopt a uniform prior on the system age from 1 to
10Gyr. Each of the 100 chains is run for at least 10,000 steps,
60% of which are discarded as burn-in. We make sure that, in
each case, the chains have run for at least 50 times the maximum

Figure 10. Joint and marginalized posterior distributions on the fitted parameters for a 1× (50×) solar metallicity H2/He envelope atop an Earth-like core are shown
in blue (gray). The median and ±1σ constraints on the parameters for the 1× solar metallicity case are quoted above each marginalized distribution.

39 https://github.com/cpiaulet/smint
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autocorrelation time recorded across all parameters and thus
secure that our chains are converged and well sample the posterior
probability density functions. We display a corner plot for the
three planets consistent with moderate H/He envelopes, GJ 9827
d, HD 106315 b, and HD 106315 c (Figure 10). GJ 9827 d and
HD 106315 b are both consistent with 1% H/He envelopes and
HD 106315 c is consistent with a 13% H/He envelope.

To fit for the water mass fractions ( fH O2
), we use the

implementation of the Zeng et al. (2016) two-component (water
and rock) model grid in smint (Table 10). The MCMC
process is analog to that used to fit for fHHe, adopting a uniform
prior on the water mass fraction (0%–100%) and a Gaussian
prior on the planet mass. We match the observed planet radius
via a Gaussian likelihood.

Figure 11. Ternary diagrams using a three-component H2O/MgSiO3/Fe model (Zeng & Sasselov 2013; Zeng et al. 2016). The solid line outlines the median mass
and radius of each planet, while the dashed line(s) delineate the 1σ contours. At any point in the diagram the mass fractions can be found by following the three thin
colored lines toward their respective side.
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To further investigate the potential fH O2
, we explore three

component models of H2O, MgSiO3, and Fe for four of our
planets, excluding HD 106315 c as its low density is
inconsistent with these models. We use a numerical tool40 in
order to solve for the interior structure of each planet and
produce ternary diagrams of the range of combinations of
MgSiO3, Fe, and H2O mass fractions that are compatible with
the observed mass and radius (Zeng & Sasselov 2013; Zeng
et al. 2016). These ternary diagrams are shown in Figure 11. GJ
9827 b and GJ 9827 c both have a low H2O fraction (�40%)
and a wide range of possibilities for MgSiO3 and Fe. GJ 9827 d
is consistent with a high H2O fraction (50%–100%) and small
fractions of MgSiO3 (0%–50%) and Fe (0%–30%). HD 106315
b is consistent with a wide range for all three components
(10%–100% H2O, 0%–90% MgSiO3, and 0%–60% Fe).

Both Prieto-Arranz et al. (2018) and Rice et al. (2019)
suggest that photoevaporation may have sculpted the inner two
rocky GJ 9827 planets. However, the outer planet, GJ 9827 d,
must have retained a moderate fraction of volatiles to be
consistent with its mass and radius. We examine whether the
system as a whole is consistent with the theory of
photoevaporation through calculating the minimum mass
required of planet d to retain its atmosphere assuming planets
b and c lost theirs to photoevaporation, as described in Owen &
Campos Estrada (2019). We find the minimum mass for GJ
9827 d is 1 M⊕, lower than its mass of 3.3 M⊕. Therefore, this
system is in agreement with this photoevaporation model
(Owen & Wu 2013, 2017). Although, GJ 9827 d may have had
a different type of atmospheric evolution other than photo-
evaporation. Kasper et al. (2020) set stringent limits on the
presence of any extended atmosphere around GJ 9827 d via
high-resolution spectroscopy of the metastable 10,833 ÅHe
triplet, inconsistent with current models of atmospheric
formation and mass loss.

Furthermore, the three GJ 9827 planets span the radius gap at
1.7R⊕(Fulton et al. 2017). The inner two planets are high density
and smaller than the radius gap (Rb=1.5R⊕, Rc=1.2R⊕)
whereas the outer planet is lower density and larger than the radius
gap (Rd=2.0R⊕). HD 106315 b and c are both lower density and
larger than the radius gap (Rb=2.4R⊕, Rc=4.4R⊕). The five
planets in these systems agree with a theory that planets smaller
than 1.7R⊕ are primarily composed of rocky cores and larger
planets have additional volatile material that contributes to their
radii (Weiss et al. 2016; Fulton et al. 2017).

7. Conclusion

In this paper, we characterized two systems, HD 106315 and
GJ 9827. These bright stars host super-Earth and sub-Neptune
planets well suited for atmospheric characterization by HST
and JWST. From our Spitzer analysis (Section 2) we improved
the planets’ ephemerides, enabling accurate transit prediction
required for future atmospheric characterization through
transmission spectroscopy. We incorporated Gaia parallaxes
to update the stellar parameters for both systems and further
constrained the limiting magnitude of nearby companions to
HD 106315 through imaging data (Section 3).

As the results of a multiyear high-cadence observing
campaign with Keck/HIRES and Magellan/PFS, we improved
the planetʼs mass measurements in preparation for the
interpretation of HST transmission spectra. We measured

planet masses in the GJ 9827 system to be Mb=4.87±0.37
M⊕, Mc=1.92±0.49 M⊕, and Md=3.42±0.62 M⊕. For
HD 106315, we found planet masses of Mb=10.5±3.1 M⊕

and Mc=12.0±3.8 M⊕. Atmospheric characterization of
small planets benefits from mass detections at 5σ significance
(Batalha et al. 2019). We have achieved 5σ masses for two
planets with pending HST analyses, GJ 9827 b and GJ 9827 d
(Hedges et al. 2020, in preparation, Benneke et al. 2020, in
preparation), and a 4σ mass for the third, HD 106315 c
(Kreidberg et al. 2020).
For GJ 9827, stellar activity signatures in the photometry and

Calcium II H&K lines (Section 4) informed our use of a
Gaussian process to account for this activity in our radial
velocity fit. We did not adopt the Gaussian process fit for our
HD 106315 analysis due to the higher AIC value and the lack
of activity signatures seen in the Calcium II H&K lines and
radial velocity data. Hotter stars (Teff>6200 K) often have
shallow convective envelopes and inefficient magnetic dyna-
mos which result in fewer spots on the stellar surface
(Kraft 1967). Therefore, hotter stars like HD 106315 may not
have enough starspots for this type of Gaussian process to be
effective.
We additionally explored the possible eccentricities for these

planets through stability arguments. We found that low
eccentricities are required for stability for these two closely
packed systems. We finally compared our derived masses and
densities with previously published models to investigate
interior compositions for these planets. We found that GJ
9827 b and GJ 9827 c are both consistent with a 50/50 rock-
iron composition, GJ 9827 d and HD 106315 b both require
additional volatiles, and HD 106315 c is consistent with a
∼10% by mass hydrogen/helium envelope.
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Some of the observations in the paper made use of the High-
Resolution Imaging instrument Zorro. Zorro was funded by the
NASA Exoplanet Exploration Program and built at the NASA
Ames Research Center by Steve B. Howell, Nic Scott, Elliott P.
Horch, and Emmett Quigley. Zorro is mounted on the Gemini
South telescope of the international Gemini Observatory, a
program of NSFs OIR Lab, which is managed by the
Association of Universities for Research in Astronomy
(AURA) under a cooperative agreement with the National
Science Foundation.

This work is based in part on observations made with the
Spitzer Space Telescope, which was operated by the Jet
Propulsion Laboratory, California Institute of Technology
under a contract with NASA. Support for this work was
provided by NASA through an award issued by JPL/Caltech.

This research has made use of the Exoplanet Follow-up
Observing Program (ExoFOP), which is operated by the
California Institute of Technology, under contract with the
National Aeronautics and Space Administration.

Part of the research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administra-
tion (80NM0018D0004).

This work has made use of data from the European Space
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gaia), processed by the Gaia Data Processing and Analysis
Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/
dpac/consortium). Funding for the DPAC has been provided
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ing in the Gaia Multilateral Agreement.

Facilities: Keck:I(HIRES), Magellan:Clay(PFS), Spitzer, APF,
TSU:AIT, Gemini:South(Zorro).

Software:radvel (Fulton et al. 2018), batman (Kreidberg
2015), SpecMatch-Emp (Yee et al. 2017), isoclassify
(Huber et al. 2017), spock (Tamayo et al. 2020), rebound
(Rein & Liu 2011), numpy (van der Walt et al. 2011),
astropy (Astropy Collaboration et al. 2013), emcee (Foreman-
Mackey et al. 2013).
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