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Abstract

We present the first comprehensive look at the 0.35–5 μm transmission spectrum of the warm (∼800 K) Neptune
HAT-P-11b derived from 13 individual transits observed using the Hubble and Spitzer Space Telescopes. Along
with the previously published molecular absorption feature in the 1.1–1.7 μm bandpass, we detect a distinct
absorption feature at 1.15 μm and a weak feature at 0.95 μm, indicating the presence of water and/or methane with
a combined significance of 4.4σ. We find that this planet’s nearly flat optical transmission spectrum and attenuated
near-infrared molecular absorption features are best matched by models incorporating a high-altitude cloud layer.
Atmospheric retrievals using the combined 0.35–1.7 μm Hubble Space Telescope (HST) transmission spectrum
yield strong constraints on atmospheric cloud-top pressure and metallicity, but we are unable to match the
relatively shallow Spitzer transit depths without underpredicting the strength of the near-infrared molecular
absorption bands. HAT-P-11b’s HST transmission spectrum is well matched by predictions from our microphysical
cloud models. Both forward models and retrievals indicate that HAT-P-11b most likely has a relatively low
atmospheric metallicity (<4.6 Ze and <86 Ze at the 2σ and 3σ levels respectively), in contrast to the expected
trend based on the solar system planets. Our work also demonstrates that the wide wavelength coverage provided
by the addition of the HST STIS data is critical for making these inferences.

Unified Astronomy Thesaurus concepts: Exoplanet atmospheres (487); Exoplanet atmospheric composition (2021)

Supporting material: machine-readable table

1. Introduction

The atmospheric compositions of extrasolar gas giant planets
are expected to vary depending on their formation locations
and accretion histories. Variation in composition of disk gas
and solids as well as the availability of polluting solids at
different locations leaves an imprint on a planet’s atmosphere
(e.g., Oberg et al. 2011; Lambrechts et al. 2014; Venturini et al.
2016; Pudritz et al. 2018). By measuring the wavelength-
dependent transit depth when one of these planets passes in
front of its host star (the planet’s “transmission spectrum”), we
can detect atmospheric absorption features that directly
constrain the mean molecular weight and relative abundances
of molecules including water, methane, carbon monoxide,
and carbon dioxide. Although some planets with strong and
clear absorption features have been thus characterized (e.g.,
WASP 96b, Nikolov et al. 2018a; WASP 39b, Wakeford et al.
2018; WASP 107b, Kreidberg et al. 2018), large observing
campaigns using the Hubble Space Telescope (HST) have

revealed the presence of high-altitude clouds that attenuate the
expected absorption signal in a majority of the close-in gas
giant planets observed to date (e.g., Sing et al. 2016; Fu et al.
2017; Tsiaras et al. 2018; Wakeford et al. 2019). This problem
is even more acute for the current sample of Neptune-sized
planets, whose relatively small radii, high surface gravities, and
low temperatures all combine to reduce the expected amplitude
of atmospheric absorption as compared to their better-studied
Jovian counterparts (e.g., Crossfield & Kreidberg 2017). This
limits our ability to search for trends in atmospheric properties
with other parameters of the system, e.g., planet mass, radius,
and temperature—all of which are crucial for improving our
understanding of planet formation and evolution.
Although the current body of observed transmission spectra

clearly require the presence of high-altitude scattering particles,
there is considerable debate about the nature and origin of these
particles. At high temperatures, we expect refractory species
such as metal oxides, silicates, and sulphides to condense in
exoplanetary atmospheres (e.g., Morley et al. 2012; Helling
2019; Powell et al. 2018). However, cloud formation is a
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complex process that depends on both microphysical processes,
such as sedimentation, nucleation, and growth, and the material
properties of the condensing species, many of which are highly
uncertain or unknown (Helling 2019). Consequently, the use of
different underlying assumptions can lead to significantly
different cloud properties, severely limiting the predictive
power of these models.

While some of these questions may be resolved by ongoing
laboratory experiments (Johnson et al. 2017, 2018; He et al.
2018a, 2018b; Hörst et al. 2018), observational constraints on
the properties of clouds in exoplanetary atmospheres provide
complementary leverage to further refine and develop micro-
physical cloud models. The nature of these constraints varies
depending on the wavelength of the observations: optical and
near-infrared transmission spectroscopy can be used to
investigate the sizes, number density, and vertical distribution
of cloud particles, while vibrational modes in the mid-infrared
can be used to directly determine the compositions of cloud
particles (e.g., Wakeford & Sing 2015; Pinhas & Madhusudhan
2017; Kitzmann & Heng 2018).

Although clouds represent a substantial challenge for
compositional inferences from transmission spectroscopy,
previous HST studies have demonstrated that we can none-
theless obtain reasonable constraints on atmospheric composi-
tion for planets with detectable near-infrared water features by
utilizing information at optical wavelengths to break degen-
eracies between cloud-top pressure and atmospheric metallicity
(e.g., HAT-P-26b, Wakeford et al. 2017a; WASP 39b,
Wakeford et al. 2018). Spectroscopic observations in the
near-infrared have been instrumental in the detection of
molecular absorption in exoplanetary atmospheres but they
are usually unable to put tight constraints on the composition,
i.e., the absolute mixing ratios, of these molecules. This is
because the transmission spectra of an atmosphere with a deep
cloud and low mixing ratios is statistically indistinguishable
(with currently available precision) from an atmosphere with a
high cloud and high mixing ratios. These distinct scenarios can
be distinguished by their differing spectral behavior in the
optical. In this spirit, the Panchromatic Comparative Exoplanet
Treasury (PanCET) survey is a multi-cycle HST treasury
program whose primary goal is to characterize the atmospheres
of a sample of 20 transiting gas giant planets at wavelengths
ranging from the ultraviolet to the near-infrared (e.g., Evans
et al. 2017, 2018; Wakeford et al. 2017b; Alam et al. 2018;
Bourrier et al. 2018; Nikolov et al. 2018b). In this study we
present new optical HST STIS PanCET observations of HAT-
P-11b, a warm Neptune-sized planet with a radius of 4.4 Earth
radii and mass of 23 Earth masses on a 4.88 days orbit around a
0.81Me, 0.68 Re K4 star (Teff=4780±50 K). This planet
has a significantly eccentric orbit (e= 0.218) and as a result its
predicted equilibrium temperature varies between ∼700 and
900 K (Bakos et al. 2010; Deming et al. 2011; Yee et al. 2018).
The planet therefore crosses multiple condensation lines, which
enhances its potential for cloud formation.

HAT-P-11b has been previously observed with both ground-
(e.g., Bakos et al. 2010; Sanchis-Ojeda & Winn 2011) and
space-based telescopes (e.g., Deming et al. 2011; Fraine et al.
2014; Huber et al. 2017) and is one of the most favorable
Neptune-sized planets for atmospheric characterization due to
its large atmospheric scale height and host star brightness
(V∼ 9). It is one of the smallest planets with a published
detection of water absorption in its 1.1–1.7 μm HST WFC3

transmission spectrum (Fraine et al. 2014, hereafter F14).
Although there is an optical detection of the planet’s secondary
eclipse using Kepler photometry (Huber et al. 2017), no
corresponding infrared detection has been reported to date.
Measurements of absorption in the He metastable 10830Åline
during transit provide complementary constraints on the size of
the planet’s exosphere and corresponding mass loss rate (Allart
et al. 2018; Mansfield et al. 2018). Although the relatively high
activity level of HAT-P-11b’s K dwarf primary can bias the
shape of the planet’s measured transmission spectrum (e.g.,
Sing et al. 2011; Rackham et al. 2018, 2019), the planet’s
nearly polar orbit (Winn et al. 2010; Hirano et al. 2011) has
enabled exquisitely detailed studies of the starspot distribution
and active latitudes (e.g., Deming et al. 2011; Sanchis-Ojeda &
Winn 2011; Morris et al. 2017a, 2017b) that can be used to
effectively correct for these effects.
Here, we combine previously published transit observations

from HST WFC3 (0.8–1.7 μm) and Spitzer (3.6, 4.5 μm)
(Fraine et al. 2014; Mansfield et al. 2018) with new optical HST
STIS observations to obtain the first comprehensive look at
HAT-P-11b’s transmission spectrum between 0.35 and 5 μm.
We compare the resulting transmission spectrum to predictions
from forward models for cloud condensation and use retrievals
to independently constrain the planet’s atmopsheric composi-
tion and cloud properties. Sections 2 and 3 describe our spectral
and photometric extraction methods, while Section 4 discusses
instrumental and astrophysical noise sources in our data.
Section 5 details our fits to these data, and Section 6 discusses
predictions from forward models for HAT-P-11b’s atmosphere.
Adopting some material properties and tools from this section,
we then use simple models to directly fit the observed
transmission spectrum in order to derive statistical constraints
on atmospheric parameters in Section 7, which we compare to
the forward models in Section 8.

2. Observations

A summary of the observations used in our analysis is given
in Table 1. We analyze 13 transits in total and describe each of
them below.
We observed three transits of HAT-P-11b with the Space

Telescope Imaging Spectrograph (STIS) on the HST (PI Sing &
López-Morales, GO 14767). Two observations were conducted
using the G430L grism (0.29–0.57 μm) on UT 2017 February
22 and UT 2017 May 26, while a third visit on UT 2017 April
12 used the G750L grism (0.524–1.027 μm). All of our
observations were obtained using the 52″×2″ slit. This was
done to minimize slit losses and the effect of telescope
breathing. Each visit consists of five HST orbits. Short (1 s)
exposures were taken before each orbit to mitigate the severity
of the exponential ramp at the beginning of each orbital light
curve, but this step did not appear to be effective for these
observations. The wavelength calibration and flat field
exposures were taken during the occultation of HST by Earth
during the last orbit. Along with the HST STIS data, we
independently re-reduce and fit all of the prior data collected
with HST and Spitzer as part of our updated global analysis,
which we discuss below in chronological order.
HAT-P-11b was observed with HSTʼs Wide Field Camera 3

(WFC3) instrument in 2012 (PI Deming, GO 12449) using the
G141 grism in the 256×256 subarray mode, which provides a
low resolution spectrum in the 1.1–1.7 μm wavelength range.
The data were collected over four HST orbits using only

2

The Astronomical Journal, 158:244 (25pp), 2019 December Chachan et al.



forward scans (McCullough & Mackenty 2012) with a scan
rate of 0 3891 s−1. The second orbit covers part of ingress. A
buffer dump occurred during the third orbit, which partially
resets the ramp that is used to model the instrumental behavior
(Deming et al. 2013; Knutson et al. 2014; Kreidberg et al.
2014); see Section 4 for more details. These data were
originally published in F14.

Four transits of HAT-P-11b were observed in 2011 using the
Infrared Array Camera (IRAC) mounted on Spitzer Space
Telescope, with two transits in each of the two warm-Spitzer
channels (3.6 and 4.5 μm). The observations were taken in the
subarray mode, which yielded 32×32 pixel images with an
integration time of 0.4 s. The Spitzer data were published along
with the WFC3 G141 data in F14.

Finally, five transits of HAT-P-11b were also observed using
the WFC3 G102 grism (0.8–1.15μm) in the 256×256
subarray mode (PI Bean, GO 14793) on UT 2016 September
14, 2016 October 13, 2016 November 7, 2016 November 26,
and 2016 December 26. This grism is complementary to the
G141 observations, as both grisms together span a series of
adjacent and overlapping water and methane bands. During
each visit, the planet was observed in scan mode over four
orbits. The use of forward and backward scans and longer
exposure times for G102 observations yielded a higher
observational efficiency (∼75%) than the 2012 G141 observa-
tions (∼50%). These data were published in Mansfield et al.
(2018); (hereafter M18), who reported a strong helium
absorption from escaping gas in the planet’s outer atmosphere
but did not see the expected molecular (water) absorption
features in this bandpass.

3. Spectral and Photometric Extraction

We use the ExoTEP framework (Benneke et al. 2019) for the
extraction and fitting of all data sets. The extraction process for
each of the instruments is described below.

3.1. HST STIS Spectroscopy

We correct for cosmic ray hits and other transient
phenomena by stacking all of the images from a given visit
and examining flux as a function of time at each pixel position.
Because these data have relatively sparse time sampling (<100
images per visit) and time-correlated instrumental effects, we
find that we obtain optimal results when we flag 4σ outliers in

each pixel’s time series and replace them with the median pixel
value. We then estimate the background in each image by
taking the median pixel value in two rectangular regions
located far enough from the spectral trace to avoid contamina-
tion. We optimize the aperture width (in the cross-dispersion
direction) for extraction of one-dimensional (1D) spectra and
decide whether or not to remove the background by minimizing
the scatter in the white light residuals after subtracting the best-
fit transit and instrumental noise model for each visit (e.g.,
Deming et al. 2013). For each visit, we consider aperture sizes
of 7, 9, 11, and 13 pixels. In the G750L visit we obtain optimal
results when we use a 9 pixel wide aperture centered on the peak
of the point-spread function and do not subtract the background.
For the G430L observations, we prefer to subtract the background
and utilize 13 and 11 pixel wide apertures for the first and second
visits, respectively. We find that in all visits the white light transit
depths and transmission spectral shapes are relatively insensitive
to our choice of aperture width.
Data taken with the G750L grism exhibit a fringing effect

due to internal reflection within individual pixels. We correct
for this effect using a fringe flat field obtained contempor-
aneously with our data following the methods outlined in
Nikolov et al. (2014, 2015) and Sing et al. (2016). Using the
first frame as a template, we then fit for the shift in position in
the dispersion direction and relative amplitude of all subse-
quent frames in order to align the frames in wavelength. These
best-fit relative amplitudes give us the normalized white light
curve for each visit. For the wavelength-dependent light curves,
we sum the flux within a 200 pixel wide bin for the G750L
grism and a 100 pixel wide bin for the G430L grism. We also
check for the presence of sodium and potassium absorption in
the G750L bandpass by extracting the flux in two narrow
bandpasses centered on the corresponding absorption lines
(588.7–591.2 and 770.3–772.3 nm, respectively).

3.2. HST WFC3 Spectroscopy

We reduce data from both the G102 and G141 grisms
following the method outlined in Tsiaras et al. (2016). Unlike
that study, we begin with the bias- and dark-corrected ima
images produced by the standard calwfc3 pipeline rather than
calibrating the raw images ourselves. Each of the exposures
consists of five nondestructive reads. We create difference
subexposures by subtracting consecutive reads (e.g., Deming
et al. 2013; Kreidberg et al. 2014; Evans et al. 2016). We

Table 1
Observations

Date (UT) Start Time Duration Observatory Band Pass Integration Exposures Reference
(μm) Time (s)

2011 Jul 11 23:11:41 7.43 hr Spitzer 3.05–3.95 0.4 62,592 Fraine et al. (2014)
2011 Aug 5 07:02:48 7.43 hr Spitzer 4.05–4.95 0.4 58,112 Fraine et al. (2014)
2011 Aug 15 01:49:20 7.43 hr Spitzer 3.05–3.95 0.4 52,633 Fraine et al. (2014)
2011 Aug 29 17:37:18 7.43 hr Spitzer 4.05–4.95 0.4 62,592 Fraine et al. (2014)
2012 Oct 18 04:58:38 6.87 hr Hubble 1.1–1.70 44.4 113 Fraine et al. (2014)
2016 Sep 14 10:36:07 5.65 hr Hubble 0.8–1.15 81.1 99 Mansfield et al. (2018)
2016 Oct 13 18:44:21 5.83 hr Hubble 0.8–1.15 81.1 99 Mansfield et al. (2018)
2016 Nov 7 05:12:38 5.88 hr Hubble 0.8–1.15 81.1 99 Mansfield et al. (2018)
2016 Nov 26 18:22:55 5.83 hr Hubble 0.8–1.15 81.1 99 Mansfield et al. (2018)
2016 Dec 26 02:17:30 5.77 hr Hubble 0.8–1.15 81.1 99 Mansfield et al. (2018)
2017 Feb 22 17:04:39 7.17 hr Hubble 0.29–0.57 140 82 This work
2017 Apr 12 14:15:13 7.67 hr Hubble 0.524–1.027 140 81 This work
2017 May 26 13:50:02 7.28 hr Hubble 0.29–0.57 140 81 This work

3

The Astronomical Journal, 158:244 (25pp), 2019 December Chachan et al.



determine the extent of the subexposure in the scan direction by
finding the rows where the median flux profile in the spatial
scan direction falls to 20% of the peak flux and add an
additional buffer of 15 pixels above and below these rows. The
extraction is not very sensitive to the number of pixels used for
this buffer and any value between 10 and 20 suffices. We then
mask out the rows exterior to this y pixel range and estimate the
background using a 20 column wide rectangular region within
the subexposure spanning columns between the end of the
spectral trace and the edge of the array, taking care to avoid any
secondary sources in the image. We remove any bad pixels by
discarding 3σ outliers from this background region and then
subtract the median of the remaining pixels from the unmasked
part of the image. We then create a combined full frame image
by coadding all of the background subtracted subexposures.

Although the pointing of WFC3 is generally very stable, our
scanned observations nonetheless exhibit small image-to-image
variations in the position of the spectral trace in the x
(dispersion) direction. By default, we estimate the magnitude
of these shifts relative to the first frame by summing each
image in the y direction and using this rough 1D-extracted
spectrum to calculate the corresponding x offset. We find that
the magnitude of this shift is less than 0.1 pixel over the entire
duration of the WFC3 G102 visits. The WFC3 G141 data were
taken shortly after the spatial scanning mode was first
implemented on HST and exhibit a larger shift of approxi-
mately one pixel over the visit, most likely due to the
suboptimal scanning strategy utilized in these older observa-
tions. We find that using the centroid of each exposure and
determining the horizontal offset relative to the centroid of the
first exposure significantly decreases the scatter in the best-fit
residuals for the G141 visit. We then use the wavelength and
trace calibration functions provided by STScI (Kuntschner &
Bushouse 2009a; Kuntschner et al. 2009b) for each grism to
calculate the full 2D wavelength solution for each image.

We flat-field all frames using the calibration files provided
by STScI (Kuntschner et al. 2011) following the method
outlined in Wilkins et al. (2014) and identify bad pixels in each
individual image using a 6σ moving median filter in both the x
and y directions. Although we also consider lower filter
thresholds, we find that these result in overly aggressive outlier
correction. We replace these outliers with the mean value
within the moving filter and repeat the same filtering a second
time to ensure that we have identified and removed all outliers.

The width of the spectral trace in the dispersion direction
varies with the y-position of the star on the detector. As a result,
lines of constant wavelength are slanted relative to the columns
of the detector. For the wavelength-dependent light curve
extraction, we follow the method outlined in Tsiaras et al.
(2016) and use the wavelength solution to determine the
boundaries of each slanted wavelength bin and sum the flux
within each bin. When the bins intersect with pixels, we use a
second-order 2D polynomial to interpolate and integrate the
flux over each partial-pixel region. This procedure ensures flux
conservation and leads to a small reduction in the photometric
scatter relative to other commonly employed methods, which
usually smooth the data in the dispersion direction before light
curve extraction (e.g., Deming et al. 2013; Fraine et al. 2014;
Knutson et al. 2014).

For the wavelength-dependent light curves obtained with the
G141 grism, we use 30 nm wide bins spanning the wavelength
range 1.1–1.7 μm. F14 utilized narrower wavelength bins, but

also convolved their 1D spectra with a 4 pixel wide Gaussian
filter prior to binning. Since we do not smooth our data, we
adopt a lower wavelength resolution. For the G102 data, we
utilize bins with a width of ∼23.3 nm spanning the wavelength
range 0.8–1.15 μm, identical to those adopted by M18. The
white light curve is simply obtained by summing the flux from
all the spectroscopic light curves.

3.3. Spitzer 3.6 and 4.5 μm Photometry

We extract the photometric light curve for each Spitzer visit
following the method described in Knutson et al. (2012), Wong
et al. (2016), and Zhang et al. (2018a). We determine the star’s
position in each 32×32 pixel Spitzer subarray image by
iteratively calculating the flux-weighted centroid within a
circular aperture with a radius of 3 pixels. To estimate the sky
background, we first mask pixels located within a 12 pixel
radius of the star’s position and then iteratively trim 3σ outliers
(e.g., Knutson et al. 2012). We calculate the mean value of the
remaining background pixels using the biweight location
method (Astropy Collaboration et al. 2013, 2018) and subtract
it from each image. We then use the photutils package
(Bradley et al. 2018) to extract the photometry using circular
apertures with radii ranging from 1.5 to 3 pixels in 0.1 pixel
increments and 3–5 pixels in 0.5 pixel increments. We select
the optimal aperture for each visit by minimizing the scatter in
the best-fit residuals, which are binned in 60 s intervals (see
Section 4.3 for more information). This procedure gives
extraction apertures of 2.8 and 2.3 pixels for first and second
transit in the 3.6 μm channel, respectively, and 2.3 and 2.6
pixels for the first and second transit in the 4.5 μm channel,
respectively.
We iteratively trim outliers in the resulting time series using

a 50 point moving median filter and discarding photometric
points that lie more than 3σ away. We also fit third-order
polynomials to the star’s x and y positions and discard any
photometric points more than 3σ away from the polynomial
model position during the observation, as these points are not
well-corrected by our instrumental noise model. The number of
points removed in each of these steps ranges between 0.09%
and 0.97% for each individual visit and is commensurate with
expectations for normally distributed data.

4. Systematics and Astrophysical Models

4.1. HST/STIS Instrumental Model

We remove the first orbit in each of the STIS data sets as the
instrumental systematics are notably worse than they are in
subsequent orbits. This difference is attributed to the thermal
relaxation of HST following target acquisition due to the
change in incidence angle of solar radiation. In addition, we
remove the first exposure within each orbit as it has a much
lower flux that is not well matched by our parametric model.
Both of these steps are standard practice for STIS data sets
(e.g., Sing et al. 2011; Nikolov et al. 2015; Wakeford et al.
2017a). For the instrumental systematics model, we use a
fourth-order polynomial in orbital phase and a linear trend in
time (Sing et al. 2008). We also fit for a linear trend in the x
(dispersion) position of the star on the array for the G750L visit
and the first G430L visit as it significantly reduces the Bayesian
Information Criterion (BIC: change of 35 and 8, respectively)
and lowers the residual scatter in our light curve fits from 1.51
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and 1.6 times the photon noise limit to 1.26 and 1.53 times,
respectively.

As discussed in Sing et al. (2019), we find that the scatter in
our white light residuals is further reduced if we decorrelate
against additional parameters related to variations in telescope
pointing. We find that the white light residuals from our initial
fit exhibit a strong correlation with the recorded R.A. and decl.,
V2 and V3 roll, and latitude and longitude from the image file
headers. However, these parameters are highly correlated with
each other and we therefore use Principal Component Analysis
(PCA) to reduce the number of independent fit parameters. We
start with six principal components and retain those that capture
�95% of the systematic variation in the light curves. Using this
criterion, we retain four and three parameters for the first and
second visit in the G430L bandpass, respectively and three
parameters in the G750L bandpass. We include linear
contributions from these PCA parameters as part of our final
systematics model. The addition of these linear jitter parameters
has a negligible effect on the BIC <BIC 2(∣ ∣ ) for all three
visits but it reduces the scatter in our residuals by 5%–8%. The
full systematics model S(t) is given as

å å= + + + +
=

S t c vt mx j p p t , 1v
i

i
k

k
k

jitter
1

4

orb( ) ( )

where tv is the time from the beginning of the visit, torb is the
time from the beginning of an orbit, pjitter are the PCA vectors
that describe the telescope pointing jitter, and c, v, m, ji and pi
are free parameters in the fit.

4.2. HST/WFC3 Instrumental Model

4.2.1. G141 grism

F14 used the spectral template fitting method to derive
wavelength-dependent transit depths for the WFC3 data. Here,
we fit the time series for each individual spectroscopic light
curve independently following the method described in Tsiaras
et al. (2016). As with the STIS data, we trim the first orbit and
the first exposure of each orbit, as they are not well matched by
our instrumental noise model.

Although there is an alternative physically motivated model
that would in theory allow us to fit these data (Zhou et al.
2017), we do not expect that this would improve the precision
of our transit depth measurement as we already have an out-of-
transit baseline that is comparable in duration to our in-transit
data. We fit the remaining orbits using a linear function of time
and an exponential function of orbital phase, which is needed
in order to correct for charge-trapping in the array (e.g.,
Deming et al. 2013; Zhou et al. 2017).

Our WFC3 systematics model S (t) is

= + + - - - -S t c vt e1 , 2v
at b Dtorb( ) ( ) ( ) ( )

where c, v, a, and b are free parameters in the fit, tv is the time
from the beginning of the visit, torb is the time from the
beginning of an orbit, and Dt is a vector (same length as tv) that
is used to add duration-specific non-zero phase offsets. We use
it to model the partial reset of the exponential ramp after a
midorbit buffer dump in the third orbit (free parameter e) and to
account for the slightly different ramp amplitude of the first
fitted orbit (free parameter d, see Kreidberg et al. 2015). The
parameters c and v characterize the linear dependence of
systematic noise on time. For the exponential dependence, a

controls the dependence on torb, and b sets the overall time-
independent amplitude of the exponential term.

4.2.2. G102 grism

Unlike the G141 data, which only scanned in a single
direction, the G102 observations were taken with an alternating
scan direction. The behavior of the ramp is slightly different for
each scan direction, likely due to small offsets in the relative
position of the scanned spectrum on the array. We carry out an
initial fit in which we allow the full exponential ramp model to
vary independently for each of the scan directions and find that
all parameters except the constant c in Equation (2) are
consistent with a single common value. We therefore carry out
our final fits assuming the same slope v and exponential ramp
coefficients a, b, and Dt for both scan directions, but assign the
forward and backward directions separate constant terms cf and
cb that are allowed to vary independently.

4.3. Spitzer Instrumental Model

Spitzer 3.6 and 4.5 μm photometry exhibits a ramp-like
behavior (e.g., Lewis et al. 2013; Wong et al. 2016; Zhang
et al. 2018a) at the start of each new observation. Rather than
fitting this ramp with a model, we simply trim the first 0.5–2 hr
of data and find that the optimum trim duration for each visit
that minimizes the scatter in our binned best-fit residuals is 1
hr. Even after truncation, we find that the second visit in the
3.6 μm bandpass possesses a significant ramp. Fitting this visit
with the standard systematics model we adopt (see Equation (3)
below) yields a much shallower transit depth and larger BIC
(Δ BIC∼20) compared to the values we obtain when we fit
for this ramp. We do not use the ramp model for the other
Spitzer visits because it changes the transit depths by 1σ and
increases the BIC. Prior to fitting we bin the data in 60s
intervals. This binning results in a lower level of time-
correlated noise in our best-fit residuals while still resolving the
transit ingress and egress (for a discussion of binning practices
with Spitzer data, see Deming et al. 2015 and Kammer et al.
2015).
The primary instrumental noise source in the 3.6 and 4.5 μm

Spitzer arrays is intrapixel sensitivity variations combined with
telescope pointing jitter. We model this behavior using Pixel-
Level Decorrelation (PLD) following Deming et al. (2015):

å= + +
=

S t vt w P t1 , 3v
i

i i
1

9

( ) ( ) ( )

where tv is the time from the beginning of the visit, Pi is the
normalized pixel count in the 3×3 array around the source,
and wi are the weights assigned to each of these arrays, which
are determined using linear regression after dividing out the
transit light curve at each step in the fit. The slope parameter v
is left to vary as a free parameter. For the second visit in the
3.6 μm bandpass, we have an additional ramp term in the
model with an amplitude A and decay timescale τ: t-Ae tv .

4.4. Transit Model

We use the BATMAN package (Kreidberg 2015) to model the
transit light curve. The astrophysical model depends on the
planet-star radius ratio Rp/R*, planet semimajor axis to stellar
radius ratio a/R*, impact parameter b, period P, and transit
center time Tc. We fit for all of these parameters in our global
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fit, but use fixed values for P, a/R*, and b when fitting
individual transits. We fix the orbital eccentricity e=0.218
and longitude of periastron w=199o to the best-fit values from
Yee et al. (2018). We validate our assumption of a linear
ephemeris by comparing the best-fit midtransit times from
individual visits with the best-fit ephemeris from our global fit
in Figure 1. The best-fit midtransit times for all visits are
consistent with a linear ephemeris at the 2σ level or better.

Our updated ephemeris is consistent with the values reported
in Deming et al. (2011) and Southworth (2011) to within 0.2σ.
However, there is only moderate agreement with the values
reported in Sanchis-Ojeda & Winn (2011) and Huber et al.
(2017). Curiously enough, the values reported by Huber et al.
(2017), Sanchis-Ojeda & Winn (2011), and Southworth (2011)
are for the same epoch and they disagree at the 10σ level. We
suspect this is due to errors in reporting of the midtransit time
in the stated time convention. For example, Southworth (2011)
and Sanchis-Ojeda & Winn (2011) report almost identical
values for the midtransit time, but the former report it in BJD
UTC while the latter do so in BJD TDB. These two time
conventions differ by 66.184 s (an additional leap second was
added in the first month of Keplerʼs quarter 14). Similarly, the
value reported by Huber et al. (2017), supposedly in BJD UTC,
matches that of Southworth (2011) converted to BJD TDB.
Careful accounting of these errors might resolve the paradoxes
posed by these differing midtransit times.

As part of ExoTEP, we employ the Python package LDTk
(Parviainen & Aigrain 2015) to calculate limb darkening
coefficients for all of our observations except the Spitzer
transits. LDTk queries spectral intensity profiles from the
PHOENIX library (Husser et al. 2013) and computes a mean
limb darkening profile for a star given its effective temperature,
surface gravity, and metallicity (and associated uncertainties).
We then fit this profile with a four-parameter nonlinear limb
darkening model, and we fix the limb darkening coefficients to
the model values in our light-curve fits. PHOENIX profiles
extend from 50 to 2600 nm in wavelength space and can
therefore only supply limb darkening coefficients for the HST
bandpasses. For the Spitzer bandpasses, we use the (four-
parameter nonlinear) limb darkening coefficients tabulated by

Sing (2010, assuming Teff=4750 K, log g=4.5, [Fe/H]=
0.3), which are calculated from ATLAS models. We investigate
the importance of our choice of limb darkening models in the
Spitzer bands by refitting the Spitzer light curves with quadratic
limb darkening coefficients as free parameters. We obtain
transit depths that agree to within 0.5σ with those obtained with
ATLAS limb darkening coefficients. We therefore conclude that
our use of ATLAS models instead of PHOENIX models at 3.6
and 4.5 μm has a negligible effect on our results.

4.5. Stellar Activity

HAT-P-11 is a relatively active K dwarf with a Ca II H & K
emission line strength of ¢ = -Rlog 4.57HK( ) (Knutson et al.
2010), and it is therefore important to address the impact of its
activity on the transmission spectrum (Mccullough et al. 2014;
Morris et al. 2017a, 2017b). Both occulted and unocculted
spots introduce wavelength-dependent biases in the transmis-
sion spectrum (e.g., Pont et al. 2008; Sing et al. 2011; Rackham
et al. 2018). These biases must be corrected to combine transit
depth measurements from different epochs and different
wavelength bandpasses.
We find no evidence for any spot crossings during the HST

observations included in this analysis, with the exception of
two G102 visits. Following M18, we simply trim the data
associated with the spot occultation rather than including this
effect in our models. While two of the four Spitzer transits with
contemporaneous Kepler transit photometry included a spot
occultation, this occultation was evident only in the Kepler
light curve. Given the relatively small chromatic effect of spot
crossing at infrared wavelengths, F14 concluded that these
spots would have had a negligible effect on the measured
Spitzer transit depths.
Unocculted spots are usually much harder to correct for as

accounting for their effect requires knowledge of the fractional
surface area of the star that is covered by the spots as well as
the average spot temperature. Fortunately, HAT-P-11 has some
of the best constraints on spot properties among all stars that
host transiting planets. This is because HAT-P-11b orbits its
star from pole to pole (its orbit is misaligned with the stellar
spin axis by 106°; Deming et al. 2011; Sanchis-Ojeda &
Winn 2011) and the star was monitored by Kepler in a broad
optical bandpass from 2009 to 2012, allowing us to observe
more than 200 transits of the planet. This essentially provides
us with a latitude–longitude map of the entire stellar surface
and constrains the spot covering fraction of the stellar surface
to be -

+3 %1
6 (Morris et al. 2017a, 2017b).

The Kepler data span the epoch of the Spitzer transit
observations and although the G141 observations were taken in
2012, they unfortunately coincided with a gap in the Kepler
coverage (F14). We also obtained photometric monitoring data
in the Cousins R bandpass with the Celestron 14 inch (C14)
Automated Imaging Telescope (AIT) at Fairborn Observatory
(Sing et al. 2015) and in the Johnson B and V filters from
the 1.2 m robotic STELLA telescope at Izaña Observatory
(Strassmeier et al. 2004; data taken from M18). These data
were obtained between 2015 and 2017, covering the epochs
of the WFC3 G102 and STIS observations but not the 2012
WFC3 G141 observations. This introduces a source of
uncertainty, as there is no uniform source of monitoring data
spanning the epochs of all of the data sets included in our
global analysis.

Figure 1. Observed minus calculated midtransit times from fits to individual
visits, where the color indicates the instrument. Predicted transit times are
calculated using the best-fit ephemeris from the global fit, with 1σ uncertainties
indicated by the dashed gray lines. Visits with minimal data during ingress or
egress have significantly larger uncertainties.
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We use the Kepler and ground-based photometric monitor-
ing data to estimate the spot coverage fraction during the
Spitzer, HST WFC3 G102, and HST STIS observation epochs.
We assume that the baseline of the relative flux from each
telescope corresponds to a median spot coverage fraction ̄ and
calculate the absolute values of ò for all the other relative flux
values. We account for the difference in the telescope
bandpasses while calculating the spot coverage fraction. In
Figure 2, we show the photometric data, relative flux in R band,
and the corresponding spot coverage fraction from Kepler,
STELLA, and the AIT for a median spot coverage fraction ̄ of
4.4% and average spot temperature of 4500 K. Histograms for
the inferred spot coverage fraction from the photometric data
are consistent with each other and with the -

+3 %1
6 estimate

obtained by Morris et al. (2017b). We find that during the STIS
observations, the stellar variability is best matched by a sine
curve with a period of 30 days and peak-to-peak relative flux of
about 1.5%. The star appears to have been somewhat less
active and variable during the epoch of the WFC3 G102
observations with peak-to-peak relative flux of 0.7% and a
period of 33 days. These observations imply that there is almost
a 1%–2% difference in the relative transit depth between
epochs due to changes in stellar brightness. These periods and
variability are also in good agreement with inferences from
Kepler.

The spot coverage fraction ò, stellar photospheric temper-
ature, and spot temperature determine the ratio of the observed
( lD ,obs) to true (Dλ) transit depths (Rackham et al. 2018):

=
- -

l
l

l l
D

D

F F1 1
, 4,obs

,spots ,star( )
( )

where lF ,spots and Fλ,star are the stellar intensity profiles
corresponding to the temperature of the spots and the unspotted
stellar photosphere, respectively. We apply this correction by
rescaling the model transit light curves at each step in our fits
by the denominator in Equation (4). We do not include faculae

in our model because they produce a distinct spectral signature
in the optical region of the transmission spectrum (e.g., Zhang
et al. 2018b), and we observe no such effect in our three HST
STIS visits (see Section 5).
To model the starspots and the surface fluxes, we use BT-

NextGen (AGSS2009) stellar models (Allard et al. 2012) and
fix the photospheric temperature to 4780 K. The brightness
contrasts estimated from spot crossings in the Kepler light
curves give a range for spot temperatures. We explore the effect
of changing median spot coverage fraction ̄ and spot
temperature on the retrieved atmospheric metallicity of the
planet. We choose combinations of spot temperatures and ̄
such that the absolute corrections to the transit depths in the
Kepler bandpass are identical. Spot temperatures of 4100,
4300, and 4500 K are thus combined with ̄ of 2.4%, 3%, and
4.4%, respectively. Figure 3 shows histograms for spot
coverage fractions for the range of variability observed in the
Kepler light curves and the corresponding atmospheric
metallicity constraints for HAT-P-11b obtained from retrievals.
We find that the metallicity posterior is relatively insensitive to
our choice of spot temperature. Following the more detailed
stellar activity study of HAT-P-11 conducted by Morris et al.
(2017b) and spot temperature characterization by M18, we
choose to adopt a spot temperature of 4500 K in the rest of this
study.
For the HST WFC3 G141 data, we assume a fixed spot

coverage fraction of 4.4% as this visit is not covered by any
photometric observation. For the Spitzer, WFC3 G102, and
STIS visits, we apply a visit-specific correction. We fit periodic
curves to the spot coverage fraction to determine its value for
the third G102 visit and the first G430L visit as ground based
data at these epochs are scarce. For the other WFC3 G102 and
STIS visits, we use the closest observation to obtain an estimate
of the spot coverage fraction, if the next closest observation is
more than 0.5 days away (i.e., on a different night). Otherwise,
we use the average of the two nearest observations.

Figure 2. Change in HAT-P-11ʼs R band flux and corresponding spot coverage fraction in 2011 and from late 2015 to early 2017. Points are calculated using
photometric monitoring data obtained in the Cousins R bandpass using the AIT telescope at Fairborn Observatory, in the Johnson B and V bands using the STELLA
telescope at Izaña Observatory, and from the Kepler telescope. We assume that the relative flux baseline for all three telescopes corresponds to a spot coverage fraction
of 4.4%, and use a photospheric temperature of 4780 K and spot temperature of 4500 K to convert these observations to the equivalent R band fluxes. Visit times for
Spitzer 3.6 μm (black) and 4.5 μm channels (black dashed), HST WFC3 G102 (red), STIS G430L (purple), and STIS G750L (blue) observations are indicated by
vertical lines. The gray curves are sinusoidal functions that best match the observed variability at different epochs and are used to infer spot coverage fractions for HST
visits that do not have contemporaneous ground-based monitoring.
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5. Analysis

The log-likelihood  (logarithm of the posterior probability)
of our astrophysical transit model M and systematics model S
given data D with uncertainty σ is
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We use the Markov Chain Monte Carlo (MCMC) method to
fit the white light time series for each visit individually and then
carry out a joint fit where the same transit shape and ephemeris
parameters are used for all data sets, while the planet-star radius
ratio is allowed to vary across different bandpasses. In all cases
we fit an independent instrumental systematics model for each
individual transit. We carry out our fits using the emcee
package, which is an affine-invariant ensemble sampler
(Foreman-Mackey et al. 2012).

We first fit each data set individually to obtain an initial set
of best-fit parameters. For these individual fits, in addition to
fitting for astrophysical and systematics model parameters, we
allow the measurement error σ to vary as a free parameter to
ensure we obtain a reduced χ2 of unity and to accurately model
uncertainties in the parameters due to the intrinsic scatter in the
light curves. We then use the results of these individual fits
as initial guesses in the joint fit and fix the measurement error
σ for each visit to the best-fit value obtained from its
corresponding individual fit. We run an initial burn-in phase
with 2000 steps for individual data sets and 40,000 steps for the
global fit. We identify and discard walkers that become trapped
in local minima by removing any chain whose maximum
likelihood value is lower than median likelihood value of any
of the other chains. We set the initial number of walkers to four
times the number of free parameters and typically reject 10%
of these walkers. Whenever an odd number of walkers remains,
we randomly remove a walker from the remaining set. After
burn-in, the fit is continued with the remaining walkers for
another 3000 steps for individual fits and 60,000 steps for the
global fit. We assume flat priors within a suitable range for each
parameter. We check for convergence by inspecting the chain
plots and running these fits with long chains three times. We
find that the parameter estimates are consistent at the 0.5σ level

or better and the transmission spectrum is consistent to
within 0.5σ.
We fit a total of 13 individual transits in our global analysis,

each with their own instrumental systematics model. This
corresponds to a total of 93 free parameters, which is too large
to reliably explore with MCMC. We therefore utilize linear
optimization to reduce the number of free parameters in our
MCMC fit. At each step in the fit, we calculate new best-fit
values for all linear parameters in the global systematics model
using linear regression while keeping all other model
parameters fixed to their values at that step in the MCMC.
This reduces the number of free parameters in the MCMC fit to
48. We additionally fix the σ parameters for all visits in our
global fit to the values obtained in our individual fits, which
reduces the number of free parameters to 35. This is small
enough to ensure reliable convergence within a reasonable
number of steps. We acknowledge that in principle this
approach might cause us to underestimate the uncertainties in
our astrophysical model parameters, as we are optimizing
rather than marginalizing over the linear instrumental model
parameters (see, e.g., Benneke et al. 2019). However, we find
that in practice these linear instrumental model parameters
contribute negligibly to the uncertainties in our astrophysical
model parameters. Optimizing the linear instrumental para-
meters in a global fit to the data excluding G102 light curves
reduces the uncertainties in Rp/R* by less than 5%.

5.1. White Light Curve Fits

We confirm that the individual transit depths in bandpasses
with multiple visits agree to within 2σ after correcting for the
effects of unocculted starspots, as discussed in Section 4.5. We
therefore report the global best-fit transit depths for each band
in Table 2. The best-fit transit light curves and their residuals
are shown in Figures 4–6. The white light curve depths for the
WFC3 G141 visit and G102 visits agree with the values
reported by F14 and M18 at the 1.5σ and 0.6σ level
respectively. Our visit-averaged 3.6 and 4.5 μm Spitzer transit
depths are in good agreement (1.5σ lower and 0.5σ higher
respectively) with the values obtained by F14. The residuals
from our Spitzer fits display the predicted root-n scaling
expected for Gaussian noise.

Figure 3. We vary starspot temperatures and spot coverage fractions such that they produce the same absolute correction in the Kepler bandpass. The spot coverage
fractions in the left panel are deduced from Kepler long cadence photometry. We fit light curves for these different stellar spot properties and quantify their effect on
the retrieved atmospheric metallicity. In the right panel, we show that the posterior for metallicity is relatively insensitive to our choice of spot temperature. We adopt a
value of 4500 K in the rest of this study following Morris et al. (2017b).
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We find that both our 3.6 and 4.5 μm Spitzer transit depths
are somewhat lower than our WFC3 G141 white light transit
depth. The difference in white light curve depths between the
WFC3 G141 observations and the Spitzer observations is
consistent with the results reported by F14. F14 attributed this
difference to stellar activity and used an offset of 93 ppm for
the WFC3 spectrum to obtain their best-fit model. However,
this difference cannot be explained by stellar activity for
plausible starspot properties. For the Spitzer transit depths to be
100 ppm higher than the HST measurements, HAT-P-11
would need to be 3% brighter during the Spitzer epochs than
the HST ones, which is larger than the observed peak-to-peak
variability of the star. For representative spot temperatures of
4500 and 4300 K, the spot coverage fraction would need to be
different by >10% and ∼5%, respectively, to obtain such a
large relative correction to the transit depths. Finally, such a
large correction to the HST measurements would strongly
distort the transmission spectrum from 0.3 to 1.7 μm and
impart an almost unphysical upward slope (with increasing
wavelength) to it. We discuss this difference in the HST and
Spitzer transit depths and our efforts to interpret it in Section 7.

5.2. Wavelength-dependent Light Curves

When fitting for the wavelength-dependent radius ratio
Rp/R* within each HST STIS and WFC3 bandpass, we fix the
orbital parameters P, Tc, a/R*, and b to the best-fit values from
the global fit. We refit the full systematics model in each
individual bandpass without recourse to values obtained from
the white light fit. We found that fitting the individual
spectroscopic light curves with the full systematics model
significantly improved the quality of the fit as compared to
using the (scaled) systematics models from the global fit. For
the HST STIS data, all parameters in the full systematics model
are obtained by linear optimization and we simply use this
model for the spectroscopic light curves as well. We find that
fitting the individual spectroscopic light curves with the full
systematics model as compared to using the (scaled) systema-
tics models from the global fit significantly improves the
quality of the fit for the WFC3 G102 data (ΔBIC>10 for 8
out of 12 wavelength bins) but not for the WFC3 G141 data.
Applying a common-mode correction to the spectroscopic light

curves obtained by dividing the white light curve flux with the
best-fit transit model (e.g., Deming et al. 2013) and employing
a simpler model for the residual systematics in the spectro-
scopic light curves is strongly favored (ΔBIC>10 for 16 out
of 19 wavelength bins). Our simple model for the WFC3 G141
spectroscopic light curves is a linear function of the measured
shift (x–xo) in the dispersion direction relative to the first
exposure with offset c and slope v:

= + -S t c v x x . 6o( ) ( ) ( )

We present Rp/R* and associated errors for each bandpass in
Table 3, the transmission spectrum in Figure 7, and show the
corresponding wavelength-dependent light curves in the
Appendix.
In Figure 7, we show both stellar-activity corrected and

uncorrected transit depths. We obtain the uncorrected depths by
fixing the orbital parameters b and a/R* to values obtained
from the global white light curve fit (shown in Table 2) and
fitting the light curves without any wavelength- or epoch-
dependent correction. This allows us to isolate the effect of
activity correction on the transit depths. We note that activity
correction is crucial for obtaining correct inferences from the
optical data. The uncorrected upward slope in the STIS G430L
bandpass would dramatically affect our interpretation of the
planet’s atmospheric properties. In addition, the magnitude
of the correction is commensurate with values necessary to
produce a consistent and connected spectrum across multiple
bandpasses. For example, the uncorrected STIS G750L depths
are fairly low compared to the STIS G430L measurements, but
STIS G750L observations are taken at a time when spot
coverage of the star is at a minimum and the STIS G430L
measurements are obtained when the star is fairly spotted (see
Figure 2). This produces a small correction for the STIS G750L
measurements and a large one for the STIS G430L depths, as
one would expect.
We see evidence for molecular absorption in the WFC3

G141 bandpass, in good agreement with the results from F14.
Our spectrum is not as smooth as that of F14, but this is likely
due to their use of a 4 pixel wide smoothing kernel (Figure 7).
Our spectrum agrees within ∼1σ with the previously published
spectrum in almost all the wavelength bins. Stellar-activity
correction introduces a slightly different slope than that of F14,

Table 2
Global Broadband Light Curve Fit Resultsa

Parameter Instrument Band Pass (μm) Value

Planet radius, Rp/R* STIS G430L 0.29–0.57 -
+0.05806 0.00028

0.00036

Planet radius, Rp/R* STIS G750L 0.524–1.027 -
+0.05783 0.00035

0.00034

Planet radius, Rp/R* WFC3 G102 0.8–1.15 -
+0.05788 0.00011

0.00016

Planet radius, Rp/R* WFC3 G141 1.1–1.7 -
+0.05847 0.00015

0.00016

Planet radius, Rp/R* IRAC Channel 1 3.16–3.93 -
+0.05778 0.00026

0.00024

Planet radius, Rp/R* IRAC Channel 2 3.97–5.02 -
+0.05811 0.00027

0.00028

Transit center time Tc (BJDTDB) L L -
+2456218.866182 0.000044

0.000042

Period P (days) L L -
+4.88780228 0.00000018

0.00000016

Impact parameter b L L -
+0.135 0.078

0.064

Relative semimajor axis a/R* L L -
+17.46 0.20

0.14

Inclinationb i L L -
+89.56 0.22

0.26

Notes.
a The Rp/R* values reported here have been corrected for unocculted spots assuming a photosphere temperature of 4780 K, spot temperature of 4500 K, and spot
covering fraction of 4.4%.
b Calculated from posteriors for b and a/R*.
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with shallower transit depths at short wavelengths and larger
transit depths at longer wavelengths. Notably, our updated
spectrum (both with and without correction) possesses a steeper
rise longward of 1.5 μm compared with F14ʼs, suggesting
the presence of methane in the planet’s atmosphere (see
Section 7.2).

Our WFC3 G102 spectrum differs from the version
published by M18 in subtle but significant ways (see inset,
Figure 7). We diagnose the reason for this discrepancy by
carrying out an additional set of fits using our models applied to
the light curves from M18. We find that a majority of the
observed vertical offset between the spectrum published
in M18 and our fit to M18ʼs light curves is due to differences
in the assumed values for the orbital parameters. We fit for
period, while fixing impact parameter and a/R* to the best-fit
values from our global fit, and eccentricity and argument of
pericenter values to the values obtained from Yee et al. (2018).
In contrast, M18 fix the period and eccentricity to values from
Huber et al. (2017) and use impact parameter and a/R* values
from F14 with Gaussian priors. Small differences in the stellar-
activity correction were found to be insignificant. Our spectrum
is not a perfect match for the one we derive using M18ʼs light
curves. The spectral shape of our fit to M18ʼs light curves is
intermediate to that of our spectrum and the published
spectrum. This implies that although our choice of systematics
model (especially the use of an additional ramp delay
parameter d for the first fitted orbit) and global fitting of
orbital parameters improves the agreement between our
spectra, some differences must partly arise due to choices

made in the light-curve extraction. In particular, there are
significant differences in our light curves for the first visit,
which arise due to M18ʼs decision to exclude the last
nondestructive read (for forward scan, first read for backward)
of the scan. These differences are important, as the absorption
features at 1.15 and 0.95 μm are barely discernible in the
spectrum published by M18. In our updated spectrum, the
combination of WFC3 G102 and G141 data reveals three
molecular absorption features: two strong features centered at
1.15 and 1.4 μm and a weak feature at 0.95 μm (Figure 7). This
allows us to infer the presence of water and/or methane with a
combined significance of 4.4σ (see Section 7.2).
Our new STIS observations indicate that HAT-P-11b has a

relatively featureless transmission spectrum at optical wave-
lengths with a hint of increasing transit depth with decreasing
wavelength (scattering slope). This is in agreement with
recently reported measurements obtained from ground-based
observations (Murgas et al. 2019). As mentioned above, a
careful accounting for the effects of unocculted spots produces
a much flatter optical transmission spectrum than the
uncorrected version. This plays an important role in constrain-
ing atmospheric metallicity and places constraints on the
effective size and number density of the particles responsible
for scattering in the atmosphere. We see no evidence for
narrow-band sodium or potassium absorption, although these
features are expected to form at relatively low pressures where
cloud opacity should be less important. This is not surprising,
as HAT-P-11b’s atmosphere is predicted to be too cold for
these elements to remain in vapor form (e.g., Lodders 1999).

Figure 4. STIS white light transit light curves before (top) and after (middle) dividing out the best-fit instrumental systematics model. The best-fit transit light curve is
shown in blue for comparison, and the fit residuals are shown at the bottom.
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Figure 5. WFC3 G102 and G141 white light transit light curves before (top) and after (middle) dividing out the best-fit instrumental systematics model. The best-fit
transit light curve is shown in blue for comparison, and the fit residuals are shown at the bottom.
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Additionally, we do not see the jump in transit depth at 0.8 μm
that Lothringer et al. (2018) report for GJ 436b and note for
HAT-P-26b.

6. Comparison to Forward Models

We next compare HAT-P-11b’s observed transmission
spectrum to predictions from a 1D microphysical cloud model
originally developed for use with solar system planets (e.g.,
Toon et al. 1979, 1992; James et al. 1997; Colaprete et al.
1999; Gao et al. 2017). These cloud models require a
temperature-pressure profile and a prescription for the vertical
mixing in the atmosphere as inputs. We draw both of these
profiles from results of a 3D general circulation model (GCM)
for HAT-P-11b. We discuss the details of both models in the
following two subsections.

6.1. General Circulation Model

We use a GCM to put constraints on the extent of (1D) mixing
in the atmosphere. This allows us to take into account the effect of
three-dimensional (3D) dynamics on the 1D atmospheric profiles
used in transmission spectroscopy studies. This is particularly
important for eccentric short-period planets like HAT-P-11b,
which are presumed to be tidally locked and therefore may have a
pressure and temperature structure that varies significantly with
longitude. The appreciable eccentricity of HAT-P-11b also leads
to the convolution of latitudinal structure and orbital phase of the
planet. We take the planet’s eccentricity into account in our GCM
and use atmospheric profiles (for temperature, pressure, eddy
diffusion coefficient) from the planet’s transit. In this case, we
utilize the Substellar and Planetary Radiation and Circulation
(SPARC) model (Showman et al. 2009; Kataria et al. 2016),
which couples the MITgcm dynamical core (Adcroft et al. 2004)

with a plane-parallel, two-stream version of the multi-stream
radiation code developed by Marley &McKay (1999). As we will
discuss in Section 7, our retrievals using the HST data prefer
relatively low-metallicity values, so we choose models with
atmospheric metallicities of 1× and 50× solar (we multiply
relative abundances of elements heavier than hydrogen and
helium by this metallicity value and renormalize the sum of
relative abundances to 1); this range is therefore a good match for
the posterior probability distribution for this parameter.
We model vertical mixing as a diffusive process with an

effective eddy diffusion coefficient Kzz. Deviations from this
diffusive approximation are almost guaranteed for tidally
locked planets, which are expected to also have vigorous
horizontal transport between the day and night sides (e.g.,
Zhang & Showman 2018a, 2018b). However, it is nontrivial to
accurately capture this horizontal transport, and we therefore
neglect it for the moment in order to explore the effects of
vertical mixing, which is key for cloud formation. This mixing
is typically parameterized as a constant value with or without
an inverse dependence on square root of pressure (e.g.,
Parmentier 2013). We depart from this formalism and instead
use the temperature, pressure, and Kzz profiles from the GCM,
which should be more representative of the relevant conditions
in HAT-P-11b’s atmosphere. We use the GCM results to
calculate 1D pressure–temperature profiles that are spatially
averaged over the east and west limbs of the planet. We
estimate the corresponding pressure/height-dependent Kzz

values for these locations using mixing length theory:

w
= =K w z L z

H

P
7zz

2
( ) ( ) ( )

where w(z) is the vertical velocity in m s−1 and L(z) is a
characteristic length scale, in this case the atmospheric pressure

Figure 6. Spitzer transit light curves before (top) and after (middle) dividing out the best-fit instrumental systematics model. The best-fit transit light curve is shown in
blue for comparison, and the fit residuals are shown at the bottom.
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scale height. This commonly adopted method (e.g., Moses
et al. 2011) gives us a height-dependent Kzz value which we
then use in our microphysical cloud models. We show the
resulting Kzz and temperature profiles as a function of pressure
for the limb average, eastern limb average, and western limb
average in Figure 8. As shown in previous GCM studies
exploring the effect of atmospheric metallicity (e.g., Lewis
et al. 2010; Kataria et al. 2014), the higher metallicity profile of

HAT-P-11b has a higher photosphere due to the higher opacity,
which produces a Kzz profile that rises more rapidly with height
than the lower metallicity model.

6.2. Microphysical Cloud Model

We use the Community Aerosol and Radiation Model for
Atmospheres (CARMA) to determine which species are expected
to condense in HAT-P-11b’s atmosphere and the corresponding
particle-size distribution and abundance. CARMA is a bin-scheme
cloud microphysics model that considers microphysical processes
such as nucleation, evaporation, condensation, sedimentation, and
diffusion. The strength of bin-scheme microphysics is that it uses
discrete bins for particle sizes and makes no prior assumption
regarding the size distribution, instead allowing the different
bins to “interact” (i.e., exchange mass) via the aforementioned
microphysical processes. For a thorough exposition of the model,
we direct the reader to Gao et al. (2018) and Powell et al. (2018).
We include the following condensible species in our model:

Cr, KCl, Al2O3, Mg2SiO4, Fe, and TiO2. We also consider
condensation of metal sulphides but find it to be unimportant.
Na2S, MnS, and ZnS have high nucleation energy barriers that
inhibit the formation of these cloud species (P. Gao et al. 2019,
private communication). Another reason ZnS clouds can be
neglected is the low abundance of Zn. We assume that KCl, Cr,
TiO2, and Al2O3 can nucleate homogeneously, meaning that
they can condense into stable clusters directly from the gas
phase and subsequently grow to larger sizes. In contrast,
heterogeneous nucleation requires a foreign surface or “seed”
onto which vapor can condense. Though the majority of Al2O3

condensates likely form via heterogeneous surface reactions
(e.g., Helling 2019), assuming homogeneous nucleation is
unlikely to greatly affect our results, as Al2O3 condenses at
much higher temperatures (∼2000 K) than considered here.
Al2O3 is present in small concentrations at the high altitudes
that we probe (Figure 9), but its distribution in this region
is primarily controlled by transport processes rather than
condensation and nucleation (Gao & Benneke 2018). We
assume that Fe and Mg2SiO4 nucleate heterogeneously on TiO2

particles, similar to the treatment of Helling (2019) and related
works. Although Fe can nucleate homogeneously as well, we
do not consider it as this process may not be efficient (Lee et al.
2018).
We model the east and west limbs separately, as well as a

limb-averaged profile, (T and Kzz) for both solar and 50× solar
metallicity atmospheres. We neglect the effect of radiative
feedback from condensation and cloud formation on the
atmosphere’s T–P profile. The resulting particle sizes and
number densities of the dominant condensate species are shown
in Figure 9 as a 2D visualization of a slice of the atmosphere at
a pressure of ∼2 mbar (τ∼ 1 for transmission spectroscopy)
with a path length of 100 cm through the atmosphere. In
addition, the area covered by the different condensate species is
proportional to the geometric cross section due to each species,
thereby visually indicating which species dominate the cloud
opacity.
It is immediately evident that for both metallicity cases, the

east and west limb-averaged profiles display distinct cloud
properties and are dominated by different condensate species.
This is primarily due to the temperature difference between the
two limbs, which can be as large as 100–200 K (see Figure 8).
Most notably, the west limb is cool enough for KCl to
condense and contribute dominantly to the opacity whereas the

Table 3
Spectroscopic Light Curve Fit Results

Wavelength (μm) R Rp * ±1σ

STIS G430L
0.346–0.401 0.05788 0.00117
0.401–0.456 0.05821 0.00045
0.456–0.511 0.05828 0.00031
0.511–0.566 0.05812 0.00029
STIS G750L
0.528–0.577 0.05903 0.00086
0.577–0.626 0.05719 0.00068
0.626–0.674 0.05787 0.00070
0.674–0.723 0.05766 0.00073
0.723–0.772 0.05587 0.00109
0.772–0.821 0.05763 0.00084
0.821–0.870 0.05789 0.00116
0.870–0.919 0.05732 0.00129
0.919–0.967 0.05597 0.00159
0.967–1.016 0.05687 0.00210
0.589–0.591* 0.06244 0.00361
0.766–0.773* 0.05689 0.00192
WFC3 G102
0.850–0.873 0.05812 0.00019
0.873–0.897 0.05778 0.00016
0.897–0.920 0.05782 0.00015
0.920–0.943 0.05795 0.00014
0.943–0.967 0.05807 0.00013
0.967–0.990 0.05810 0.00013
0.990–1.013 0.05805 0.00013
1.013–1.037 0.05784 0.00011
1.037–1.060 0.05811 0.00013
1.060–1.083 0.05787 0.00012
1.083–1.107 0.05811 0.00012
1.107–1.130 0.05831 0.00012
WFC3 G141
1.120–1.150 0.05899 0.00044
1.150–1.180 0.05896 0.00041
1.180–1.210 0.05825 0.00028
1.210–1.240 0.05740 0.00033
1.240–1.270 0.05726 0.00031
1.270–1.300 0.05842 0.00023
1.300–1.330 0.05803 0.00023
1.330–1.360 0.05914 0.00030
1.360–1.390 0.05867 0.00031
1.390–1.420 0.05909 0.00030
1.420–1.450 0.05941 0.00031
1.450–1.480 0.05933 0.00030
1.480–1.510 0.05751 0.00029
1.510–1.540 0.05878 0.00027
1.540–1.570 0.05846 0.00030
1.570–1.600 0.05827 0.00036
1.600–1.630 0.05889 0.00030
1.630–1.660 0.05950 0.00037
1.660–1.690 0.05823 0.00102

(This table is available in machine-readable form.)
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east limb is completely devoid of condensed KCl. The lower
temperature of the west limb also causes more nucleation sites
to form, additionally increasing the cloud opacity in this region.
The east limb has a significantly lower condensate number
density (<100 m−3) and consists of species that have cloud
bases deep in the atmosphere but are carried to pressures
probed by transmission spectroscopy by strong vertical mixing
(Figure 8). These differences result in distinct predictions for
the mid-IR spectra of the two limbs, and suggest that cloud
models utilizing the limb-averaged pressure–temperature
profile may not produce accurate predictions (e.g., Kempton
et al. 2017). Using the average of the transmission spectra
rather than the average of the pressure–temperature profile for
the two limbs should allow a better comparison of the models
with the data. We therefore compare our retrieval results with
model transmission spectra generated by averaging the spectra
from the east and west limbs.

Increasing the metallicity from 1× solar to 50× solar
increases the abundance of condensates by 1–2 orders of

magnitude. Although the rate of homogeneous nucleation
increases when the metallicity increases, the particle sizes tend
to be somewhat smaller because there is less gas (per nucleated
site) to provide additional condensible material for the growing
particle. KCl overwhelms the absorption cross section on the
west limb while the east limb is much clearer.
Figure 10 shows transmission spectra generated using

CARMA models. The models provide a good match to the
observed absorption features at 0.95, 1.15, and 1.4 μm while
maintaining a relatively flat optical spectrum without any fine-
tuning or fitting. We find that the 1× solar metallicity
atmosphere is a slightly better match for the observed
amplitude of the molecular absorption bands and optical
scattering between 0.3 and 1.7 μm than the 50× solar
metallicity model (reduced χ2 of 1.8 and 2.1, respectively).
However, both of these models predict strong methane
absorption in the 3.6 μm Spitzer band, making them a relatively
poor match to the observed transit depth in this band.

Figure 7. The transmission spectrum of HAT-P-11b both with and without stellar-activity correction. Our transmission spectrum is in good agreement with F14ʼs
published spectrum. In the inset figure, we compare our WFC3 G102 spectrum with a fit to M18ʼs light curves, as well as M18ʼs published spectra. Our G102
spectrum deviates most significantly from the published spectrum at 0.86, 1.025, and 1.095 μm, which has the effect of washing out the small absorption feature at
0.95 μm in the published version.

Figure 8. Temperature (left) and vertical mixing parameter Kzz (right) profiles as a function of pressure at the orbital phase of the transit (since HAT-P-11b has a
significant eccentricity). These profiles are obtained from a SPARC GCM model for HAT-P-11b and are used as inputs in our microphysical cloud models.
Transmission spectroscopy probes the atmosphere at pressures roughly between 10−1 and 10−4 bars.

14

The Astronomical Journal, 158:244 (25pp), 2019 December Chachan et al.



7. Atmospheric Retrieval: PLATON

We use a simple and highly customizable atmospheric retrieval
model, PLATON16 (Zhang et al. 2019) to constrain HAT-P-11b’s
atmospheric properties using its transmission spectrum. PLATON is
based on ExoTransmit (Kempton et al. 2017) and uses a fast

Python-based algorithm to compute forward models for planetary
atmospheres, which are then compared with the data in a retrieval
framework. PLATON includes opacities for 30 different molecular
and atomic species (M. Zhang et al. 2019, in preparation), the
majority of which are calculated using line lists from ExoMol
(Tennyson et al. 2018) and HITRAN (Gordon et al. 2017). We use
nested sampling for our retrievals to accurately capture the
posteriors of atmospheric model parameters that may display
multimodality. More importantly, using nested sampling allows us

Figure 9. Plot windows showing 2D slices of the atmospheric condensate compositions for a 1× solar and 50× solar metallicity atmosphere. The slices sample the
atmosphere on the east and west limbs at τ∼1 and show the number of condensate particles contained in a 100 cm×100 cm×100 cm volume. Condensates on the
two limbs have distinct compositions and increasing the metallicity has a significant effect on condensate number density, especially on the west limb. These plots
serve as a visual guide and indicate that the scattering cross section at the wavelengths of interest is mostly dominated by KCl particles. Mg2SiO4 and Al2O3 particles
also make significant contributions to cloud opacity, especially in the 1× solar metallicity case.

Figure 10.Measured transmission spectrum of HAT-P-11b vs. transmission spectra generated by averaging CARMA models for the east and west limbs. These model
spectra fit the measured spectrum quite well without any fine-tuning or parameter fitting. The HST data display a slight preference for the 1× solar metallicity model.
However, both the 1× and 50× solar metallicity models are unable to reproduce the Spitzer transit depths.

16 Planetary Transmission Atmosphere Tool for Observer Noobs: https://
github.com/ideasrule/platon.
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to compare the Bayesian evidence for different retrievals and
rigorously quantify the significance of molecular absorption
detection.

We fit for HAT-P-11b’s atmospheric properties assuming an
isothermal atmosphere in chemical equilibrium. We allow the
planet radius Rp, temperature T, atmospheric metallicity log (Z),
and the carbon-to-oxygen ratio C/O to vary as free parameters
in our fit. We also include scattering from high-altitude clouds,
which we discuss in the following section. All of these
parameters have flat priors. For Rp and T we choose physically
motivated lower and upper bounds, while our prior range for
metallicity and C/O ratio is dictated by limitations in our
model’s precomputed equilibrium chemistry grid (see Table 4).
Our grid limits us to log (Z)�−1, but we linearly extrapolate
(in Z) abundances of atoms and molecules containing elements
heavier than hydrogen and helium to lower metallicities (down
to log (Z)=−2) to resolve the posterior distribution on the
lower metallicity end. We verify that linear extrapolation in Z
captures the atmospheric composition reasonably well by
comparing transmission spectra obtained for atmospheric
metallicities between 0.1× and 1× solar from extrapolation
and from the precomputed abundance grid. We include the
stellar radius (0.683±0.009 Re; Deming et al. 2011) and
planetary mass (23.4±1.5M⊕; Yee et al. 2018) as free
parameters in our model with Gaussian priors set to the published
values. This ensures that we correctly account for the effects of
these uncertainties in our model fits. We also include an additional
parameter (“Error Multiple” σmult, same for all instruments) that
multiplies the errors on the data with a constant factor to account
for the errors’ under- or overestimation.

7.1. Scattering from Clouds

We model scattering particles with five parameters: a cloud-
top pressure (Pcloud) below which the atmosphere is opaque at
all wavelengths (top of a gray cloud), particle number density
n0 at Pcloud, a lognormal distribution of particle sizes centered
on an effective particle size a with distribution width σ, and the
scale height for particle number density as a fraction f of the gas
scale height Hgas. This allows for a deep gray cloud that begins
to thin as the pressure decreases. Alternatively, it can be
interpreted as a haze layer lying on top of a gray cloud. The
particle-size distribution p(r) and number density as a function

of height n(z) are given by:
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The extinction cross section, σext, from condensate particles is
then given as:

òs l l p= -z n e p r Q r r dr, , . 10z fH
ext 0 ext

2gas( ) ( ) ( ) ( )

We calculate Qext, which depends on the refractive index,
using the Mie scattering formalism. The effective particle size a,
number density n0, and relative scale height f play a decisive role
in shaping the planetary transmission spectrum. The effective
particle size a determines the wavelength where the Rayleigh
slope begins (λ∼ 2π a). The number density n0 and fractional
scale height f set the overall scale of the opacity contribution
from scattering (relative to molecular absorption opacity) and are
partially degenerate with each other. We find that f is almost
entirely unconstrained by our data and allowing it to vary in our
retrievals does not have any significant effect on the posteriors
for the other parameters in our model. We therefore turn to our
microphysical cloud models for HAT-P-11b, which indicate the
effective particle size is roughly constant in the pressure range
0.1–100 mbar and that the effective number density falls off with
the pressure scale height Hgas. We fix f=1 unless otherwise
specified in order to reduce the number of free parameters and to
allow for a more direct comparison with predictions from our
microphysical models.
We also keep the value of the refractive index fixed to a

single, wavelength-independent value in our fits. Our micro-
physical cloud models predict that condensate clouds in HAT-
P-11b’s atmosphere will include multiple distinct species.
However, the refractive indices for all these species apart from
Fe have a very weak dependence on wavelength and negligible
imaginary parts in the 0.1–5 μm region spanned by our data
(e.g., see Kitzmann & Heng 2018). Adopting a wavelength-
independent real value for the refractive index also speeds up
our model computations enormously, which is a necessary
requirement for retrieval codes. Figure 11 shows that the shape
of the predicted transmission spectrum is relatively insensitive

Table 4
Median Parameters and 68% Confidence Intervals (CI) from PLATON Retrieval

Parameter Prior HST WFC3 HST WFC3 + STISa HST + Spitzer

Median 68% CI Median 68% CI Median 68% CI

Isothermal Temperature (K) [500, 1200] 941 [726, 1114] 740 [635, 876] 736 [540, 1026]
log (Metallicity/Ze) [−2, 3] −1.39 [−1.79, −0.16] −0.98 [−1.40, −0.36] 2.04 [0.12, 2.75]
C/O [0.2, 2] 1.03 [0.62, 1.56] 0.97 [0.51, 1.56] 0.63 [0.30, 1.49]
log (Cloudtop Pressure/Pa) [1, 6] 4.71 [3.96, 5.46] 4.25 [3.67, 4.88] 2.94 [2.02, 4.77]
log (Particle Size/m) [−8, −5] −6.69 [−7.61, −5.62] −6.67 [−7.59, −5.65] −6.60 [−7.58, −5.60]
log (Number Density/m−3) [−10, 15] −1.70 [−7.11, 3.92] −1.70 [−7.09, 3.67] −0.59 [−6.65, 5.42]
Error Multiple (σmult) [0, 4] 1.46 [1.29, 1.69] 1.32 [1.19, 1.48] 1.67 [1.51, 1.87]

Note.
a We regard this to be the most reliable retrieval. See Sections 7.2 and 8.
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to the exact value we assume for the refractive index in our
wavelength range of interest. We set this parameter equal to
1.5, as this is fairly representative of the dominant cloud
species (KCl) predicted by our forward models.

Although the particle-size distribution can take an arbitrary
functional form, the distribution of large particles that are
abundant enough to contribute most significantly to scattering
may be captured by a lognormal distribution. We keep the
width of the lognormal distribution fixed in our fits. Varying
this parameter mimics the effect of increasing particle size as a
broader distribution shifts the effective size of the particles to
larger values and large particles tend to dominate the cloud
opacity (e.g., Wakeford & Sing 2015). Therefore, variations in
the distribution width are degenerate with changes in particle-
size distributions. Increasing the distribution width makes the
spectrum flatter in a given wavelength range, as does increasing
the effective particle size (see Figure 11). We fix σ=0.5,
which agrees well with typical values for aerosols in the Earth’s
atmosphere (e.g., Pinnick et al. 1978; Ackerman & Marley
2001; Elias et al. 2009; Shen et al. 2015) and produces a
scattering behavior that is roughly compatible with that
produced by the CARMA model with its nonparameterized
particle-size distribution.

7.2. Retrieval Results

7.2.1. HST WFC3

We begin by fitting the molecular absorption features in the
WFC3 G102 and G141 bandpasses, as these features provide
the strongest constraints on the planet’s atmospheric composi-
tion. Because these data span a relatively limited wavelength
range, a simplified cloud model with a single opaque cloud
deck is adequate. Nonetheless, we “fit” for Mie scattering
parameters for later comparison of best-fit models with models
that match the entire HST transmission spectrum. We fit for
temperature, atmospheric metallicity, and C/O ratio as well,
assuming chemical equilibrium. The resulting best-fit model is
shown in Figure 12 and the corresponding constraints on the
model parameters are given in Table 4. The steep rise in transit
depth longward of 1.5 μm hints at the presence of methane in
the atmosphere. We verify this by confirming that this upward
rise disappears if methane is removed from our atmospheric
models.

We find that HAT-P-11b’s atmospheric parameters, in
particular its metallicity, are poorly constrained in these fits
(see Figure 13 and Table 4). The limited wavelength range of
the WFC3 data limits our ability to uniquely infer the
metallicity and cloud-top pressure. As for the C/O ratio, the
presence of absorption features due to water does not
automatically imply a C/O ratio <0.9 for planets with
equilibrium temperatures 800–1000 K as it does for hot
Jupiters17 (Madhusudhan 2012; Kreidberg et al. 2015; Heng
2018). Below ∼800 K, methane is the thermodynamically
favored carbon-bearing species in hot Neptunes, except at very
high atmospheric metallicities (Moses et al. 2013). Adding
more carbon relative to oxygen does not therefore increase the
abundance of CO at the expense of water. Our models indicate
that increasing the C/O ratio (even to values greater than one)
at temperatures below 800 K has a negligible effect on the
water abundance and the methane abundance simply increases
linearly with C/O.

Figure 11. Effect of varying σ and refractive index in our Mie scattering model. We assume a particle size a=1 μm, refractive index of 1.5, fractional scale height
f=1, particle-size distribution width σ=0.5, and number density at the base of the atmosphere no=104 cm−3 unless specified otherwise.

Figure 12. Transmission spectrum in the HST WFC3 and STIS bandpasses
(black filled circles) with best-fit Mie scattering model spectra from PLATON
overplotted along with the 1σ contours.

17 The exact transition temperature depends on other properties such as
atmospheric metallicity and surface gravity.
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The results from this retrieval differ significantly from those
presented in F14 primarily for three reasons. First, we include
WFC3 G102 data here that have small uncertainties and
consequently a strong influence on the retrieved posteriors. The
addition of WFC3 G102 data shifts the peak of the metallicity
posteriors to lower values. When we utilize only the WFC3
G141 data (or WFC3 G141 + Spitzer data with an offset for the
Spitzer data), our retrieved results agree with F14ʼs. Second,
we apply a wavelength-dependent stellar-activity correction
that changes the spectrum in such a way that a low-metallicity–
deep-cloud solution fits the data. To test whether this shift to
low metallicity is due to our stellar-activity correction, we
combined the WFC3 G141 spectrum from F14 and our WFC3
G102 spectrum and performed retrieval analysis on the
corrected and uncorrected version of the combined spectrum.
We found that applying the stellar-activity correction shifts the
posteriors to low metallicity. Third, we choose a different prior
for atmospheric metallicity and extend it to 0.01× solar so as to
resolve the posterior for the retrieved metallicity. F14 only
explored atmospheric metallicities �1× solar in their retrievals
and we find that restricting our prior space to match theirs
results in significantly better agreement. Additionally, our
models do not favor atmospheric metallicities 100× solar
primarily because our spectrum, unlike the one published
in F14, favors the presence of methane in the atmosphere (see
Section 7.2.4 for more details).

7.2.2. HST WFC3 + STIS

Next, we see how the inclusion of STIS data alters the
posteriors for these parameters. Because our data now span a
much larger wavelength range, we must include wavelength-
dependent scattering in our model (Section 7.1). The best-fit
model is shown in Figure 12, parameter constraints are
tabulated in Table 4, and the full posteriors for key atmospheric
parameters are shown in Figure 14. The data place relatively
tight constraints on the cloud-top pressure, indicating that we
are probing down to ∼100 mbar. This is in rough agreement
with the inferred (gray) cloud-top pressures of 10–50 mbar for
CARMA models. The constraints on atmospheric metallicity
are significantly tighter than those provided by WFC3 data
alone, with a 2σ confidence interval of 0.02–4.6× solar. The
posterior for atmospheric metallicity has a skewed shape with a
long tail toward high metallicities. We find that the 3σ upper

limit for metallicity is 86× solar, indicating that enhanced
metallicities are still consistent with our data. Unlike F14, our
fits prefer lower atmospheric metallicities. Nonetheless, for
metallicities greater than the lower prior bound in F14 (1×
solar), our metallicity posteriors are in qualitative agreement
with the ones published in F14. The addition of the STIS data
to WFC3 data limits the degeneracy between cloud-top
pressure and atmospheric metallicity (see Figure 14) encoun-
tered by F14, resulting in correspondingly narrower constraints
on these properties (Benneke & Seager 2012).
We show the marginalized posterior probability distributions

for metallicity, C/O, and cloud-top pressure in Figure 13. The
HST STIS data provide additional constraints on atmospheric
properties by disfavoring models with very low metallicity (log
(Z)−1.5), and correspondingly high cloud-top pressure
Pcloud and high metallicity (log (Z)1). This is apparent in
Figure 12 where we see that the STIS data narrow the range of
model transmission spectra that agree within ±1σ.

7.2.3. HST + Spitzer Data

We carry out a final set of fits including both the HST STIS
+ WFC3 and Spitzer transit depths. The full transmission
spectrum with the best-fit model from PLATON is shown in
Figure 15 and the median and confidence intervals for retrieved
parameters are given in Table 4. Our 3.6 μm Spitzer transit
depth is low relative to the HST data and discrepant with the
depth predicted by the best-fit model to the HST data. We are
unable to find a single model that can simultaneously match the
observed strength of the WFC3 absorption features while fitting
the noticeably shallower Spitzer transit depths.
The inclusion of Spitzer data worsens the constraints on most

atmospheric parameters (Table 4). The acceptable temperature
and cloud-top pressure ranges now span the entire prior range.
The constraints on metallicity from this fit are inconsistent with
results from the HST-only fits. The preferred metallicity rises to
a few 100× solar, which allows the models to fit the flat
baseline of the data by reducing the scale height while still
maintaining some molecular absorption and reducing the
relative abundance of methane in the atmosphere. We find
that the particle size and number density are relatively
unconstrained in both the HST-only and HST + Spitzer fits.
The upper limit on the number density varies as a function
of particle size (as expected) and is marginally higher for the

Figure 13. Marginalized posterior probability distributions for the metallicity, C/O ratio, and cloud-top pressure from a fit to the WFC3 data alone and a fit to the
WFC3 + STIS data set.
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HST + Spitzer fit. The error multiple (σmult) parameter, which
is a measure of how underestimated the errors in the data are,
jumps to ∼1.7, i.e., >20% larger than the value obtained with
HST data alone. In addition, the reduced χ2 value (calculated
using the errors on the transit depth measurements) increases
from 1.9 for the HST-only fit to 2.8 for the full data set fit. We
therefore conclude that our models are unable to provide a
satisfactory fit to the full data set. Including an offset of
∼100–150 ppm could reconcile the Spitzer depths with the
models that fit the HST data. Fitting for this offset in a retrieval
framework also yields similar estimates for its magnitude.
However, as emphasized in Sections 4.5 and 5.1, such a large
stellar-activity correction is incommensurate with the observed
stellar variability.

7.2.4. Retrievals Without Methane and/or Water Opacity

We quantify the significance of observed molecular absorp-
tion features by using the evidence obtained from nested
sampling to compute Bayes factors for model comparisons. To
test for the presence of a certain molecule (and the associated
confidence/significance), we remove opacity contributions
from the molecule and refit the transmission spectrum while
keeping the priors unchanged. The ratio of the Bayesian
evidence for fits with and without the molecular opacity yields
the Bayes factor and allows us to quantify the data’s preference
for one model over the other (e.g., Benneke & Seager 2013).
There is significant overlap between methane and water
features in the near-infrared region (0.8–1.7 μm), and we
therefore perform three additional retrievals for the HST data

Figure 14. Posterior probability distributions for fits of the HST data set. Median parameter values and 68% confidence intervals for the marginalized 1D posterior
probability distributions are indicated with vertical dashed lines.
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along with the nominal case described above. In these three
retrievals, we remove both water and methane opacity, just
water opacity, and just methane opacity.

The evidence, Bayes factor (relative to the nominal model
that includes both methane and water opacity), and equivalent
σ significance for each of the three cases are shown in Table 5.
The combined significance for the presence of water and
methane is 4.4σ. The Bayes factor for the two molecules
individually is lower than the reported combined significance.
The detection significance for each molecule is sensitive to
relatively subtle features of the spectrum and may change due
to small differences in the shape of the absorption features.
Notably, the inclusion of HST STIS data makes the case for the
presence of water and/or methane stronger. With WFC3 data
alone, a similar comparison gives lower values for the Bayes
factor for all three retrievals. This is primarily because the
relatively flat optical spectrum excludes very low atmospheric
metallicity models (log Z−1.5), which possess somewhat
higher evidence values (in HST WFC3–only retrievals) and
therefore weaken the case for the presence of these molecules.

This exercise also allows us to investigate whether the
disagreement between inferences made from HST and Spitzer data
arises simply due to the absence of methane from the atmosphere.
Vertical mixing and quenching could lower the methane abundance
by orders of magnitude relative to the equilibrium values (Moses
et al. 2011, 2013). However, quantifying this effect for HAT-P-11b
requires a more careful analysis as its temperature-pressure profile
overlaps with the equal abundance curve of CH4–CO. This picture
is further complicated by the planet’s orbital eccentricity (see
Visscher 2012). We test whether our fit to the HST data without
CH4 opacity fits the Spitzer data any better. We find that removing

methane’s opacity requires a larger abundance of water to match
the strength of the spectral features in the WFC3 bandpass. This
pushes the best-fit models to higher metallicities (lower abun-
dances/metallicities are ruled out by the STIS data). The best-fit
models thus obtained match the 3.6μm depth quite well but the
higher atmospheric metallicities imply the presence of a substantial
amount of CO and CO2 as well, which increases the 4.5μm model
depth and make it as discrepant with the data as the 3.6μm depth is
in our nominal model, which includes methane opacity.

8. Discussion and Conclusions

Our picture of HAT-P-11b’s atmosphere is primarily driven
by the HST observations, which provide a self-consistent,
spectrally resolved picture of the planet’s atmosphere over nine
separate transit observations. The fact that we see clear
evidence for molecular absorption across multiple visits and
multiple bands leads us to conclude that any plausible model
for this planet’s atmosphere must be able to reproduce the
observed shape of these absorption (water + methane) bands.
These models all overestimate the observed transit depth in the
3.6 μm Spitzer band; this may indicate that methane is
underabundant in HAT-P-11b’s atmosphere as compared to
the predictions of our equilibrium chemistry models. However,
comparison of Bayesian evidence for HST retrievals suggests
that methane is indeed present. We are unable to resolve these
apparent contradictions with the current data set, but future
spectroscopic observations of this planet with the James Webb
Space Telescope (JWST) should provide a much clearer picture
of its transmission spectrum in the mid-infrared wavelengths
probed by the Spitzer photometry.
If we focus our attention for now on the HST-only fits, our

updated results point to a significantly lower value for the
planet’s atmospheric metallicity than that reported by F14. This
runs counter to the trend observed in the solar system
(Figure 16(a)): Uranus and Neptune have atmospheric C/H
ratios between 70× and 100× that of the Sun, while Jupiter’s
C/H ratio is just a few times solar (Wong et al. 2004; Fletcher
et al. 2009; Karkoschka & Tomasko 2011; Sromovsky et al.
2011, see also, e.g., Kreidberg et al. 2014). Although there are
relatively few published constraints on the atmospheric
metallicities of Neptune-mass planets around other stars, GJ
436b appears to have an atmospheric metallicity of at least

Figure 15. Transmission spectrum for HAT-P-11b including both HST and Spitzer data (black filled circles) along with the best-fit model from PLATON and
corresponding 1σ and 2σ contours (dark blue and light blue, respectively). The best-fit model for HST data is also shown for comparison, which predicts a much larger
transit depth at 3.6 μm. The inclusion of the Spitzer transit depths shifts the models toward solutions with high atmospheric metallicity, which suppresses the depth of
the absorption features in the WFC3 bands and decreases the overall quality of the fit in this region.

Table 5
HST Retrievals Evidence

Model log (Evidence) Bayes σ

Factor

Nominal 368.9±0.1 L L
Without CH4 and H2O 361.0±0.1 1:2812 4.4
Without CH4 364.8±0.1 1:64 3.4
Without H2O 366.1±0.1 1:17 2.9
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200× solar (Madhusudhan & Seager 2011; Moses et al. 2013;
Morley et al. 2017). However, HAT-P-26b (Wakeford et al.
2017a) provides a counterexample of an extrasolar Neptune
with a relativley low atmospheric metallicity (4.8−4.0

+21.5× solar).
Our new observations suggest that HAT-P-11b is more similar
to HAT-P-26b than it is to either Neptune or GJ 436b. The low
atmospheric metallicity of HAT-P-11b is all the more striking
because it orbits a metal-rich star ([Fe/H]=+0.3). The
composition of the planet’s atmosphere therefore verges on
being almost identical to that of the primordial gas that formed
the star. This diversity in atmospheric composition of Neptune-
mass planets suggests that they may not be a homogeneous
planet population.

Comparison of atmospheric metallicity with bulk metalli-
cities (mass fraction) calculated by Thorngren & Fortney
(2019) indicates that Neptune-class planets may possess
low-metallicity envelopes despite having a high bulk metal

fraction (Figure 16(b)). This implies that most of the solids,
which have the potential to enrich the envelope, ought to have
finished accreting before the initiation of substantial gas
accretion from the disk. It also requires mixing in the interior
to not be strong enough to significantly enrich the envelope.
We expect that the sample of Neptune-mass planets with
well-measured atmospheric metallicities will be significantly
expanded by JWST, providing a much clearer view of the
statistical properties of this population of planets.
In addition to providing improved constraints on HAT-

P-11b’s atmospheric metallicity, our updated transmission
spectrum provides us with an opportunity to explore the
properties of the scattering particles in this planet’s atmosphere.
We find that transmission spectra for our microphysical cloud
models agree quite well with the observed HST spectrum
(Figure 10). In Figure 17, we compare our retrieved cloud
properties to those predicted by the models. The data do not put

Figure 16. (a) Atmospheric metallicity vs. planet mass for planets observed by HST and Spitzer (Kreidberg et al. 2014, 2015; Brogi et al. 2017; Morley et al. 2017;
Wakeford et al. 2017a, 2018; Benneke et al. 2019). (b) Atmospheric metallicity vs. bulk metallicity (obtained from Thorngren & Fortney 2019) for Neptune-class
planets. For Neptune, we plot lower and upper limits rather than 1σ error bars (Helled & Guillot 2018). GJ 3470b is not included on this plot because the assumptions
used to derive bulk metallicity constraints in the Thorngren et al. (2016) models may not be appropriate for planets with such low masses.

Figure 17. Particle number density as a function of radius from our microphysical cloud models at different pressures/heights in the atmosphere. We overplot a
sample of lognormal particle-size distributions at 10 mbar from our retrievals for comparison. The best-fit size distribution is highlighted with a dark blue line. All
profiles correspond to models with high likelihoods.
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narrow constraints on these retrieved cloud properties and there
is a degeneracy between mean particle size and number density
(as evident in Figure 14). Regardless, the upper limit on mean
particle size and its corresponding number density is roughly
commensurate with predictions from the microphysical cloud
models. Improved constraints provided by new data in the
future should enable us to compare the predictions of the
forward model and the retrieved parameters more rigorously.
Moreover, the good agreement between the CARMA models
and the retrieved models from PLATON (which uses local
condensation from GG-chem18 to deplete the gas phase) is
reassuring because it is usually unclear if the amount of
retrieved cloud opacity is realistic or not compared to the gas
phase chemistry and condensation.

In the future, more accurate microphysical cloud models will
be crucial for improving our understanding of the properties of
these atmospheres. Better a priori predictions for cloud formation
could allow future JWST observers to identify and prioritize
observations of planets with relatively cloud-free terminators,
while model-based constraints on cloud properties would help to
limit degeneracies between cloud properties and atmospheric
metallicity for planets with cloudy atmospheres. Our observations
of HAT-P-11b serve as a useful illustration of both the limitations
of our current understanding of cloud formation in these
atmospheres, and also the power of spectrally resolved data with
broad wavelength coverage to provide useful constraints on
atmospheric composition despite our limited understanding of
relevant cloud-formation processes.
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Astronomy. J. K. Barstow acknowledges funding support from
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Appendix

Spectroscopic light curves for all the HST visits are shown
here in Figures 18–23.

Figure 18. HST STIS G430L wavelength-dependent light curves for visit 1
and 2.

Figure 19. HST STIS G750L wavelength-dependent light curves.

18 GG-chem is an open source thermo-chemical equilibrium code that
calculates abundances of different molecular and atomic species given gas
elemental composition, temperature, and pressure (Woitke et al. 2018, https://
github.com/pw31/GGchem).
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Figure 20. HST WFC3 G102 wavelength-dependent light curves for visit 1 and 2.

Figure 21. HST WFC3 G102 wavelength-dependent light curves for visit 3 and 4.
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Figure 22. HST WFC3 G102 wavelength-dependent light curves for visit 5.

Figure 23. HST WFC3 G141 wavelength-dependent light curves.
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