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We present and analyze 17 consecutive years of UBVRI time-series photometry of the spotted giant component of the
RS CVn binary HD 208472. Our aim is to determine the morphology and the evolution of its starspots by using period-
search techniques and two-spot light-curve modelling. Spots on HD208472 always occur on hemispheres facing the ob-
server during orbital quadrature and flip their location to the opposite hemisphere every approximately six years. The times
when the spots change their preferential hemisphere correspond to times when the light curve amplitudes are the smallest
and when abrupt changes of the photometric periods are observed. During these times the star is also close to a relative
maximum brightness, suggesting a vanishing overall spottedness at each end of the previous cycle and the start of a new
one. We find evidence for a 6.28±0.06-yr brightness cycle, which we interpret to be a stellar analog of the solar 11-year
sunspot cycle. We also present clear evidence for a brightening trend, approximated with a 21.5±0.5-yr period, possibly
due to a stellar analog of the solar Gleissberg cycle. From the two-spot modelling we also determine an upper limit for the
differential-rotation coefficient of α = ΔP/P of 0.004±0.010, which would be fifty times weaker than on the Sun.

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Attention was drawn to HD 208472 (V2075 Cyg) only af-
ter its strong Ca II H and K emission was discovered by
W. Bidelman in 1991. Henry et al. (1995) discovered its
photometric variability, determined a photometric period
of 22.54 days, and presented a preliminary orbital period
of 22.6 days, showing this star to be a synchronous rota-
tor. They concluded that the system is very active as evi-
denced by its large-amplitude V -band variations of 0.m36
in 1993 and Hα-line emission well above the continuum.
Later, Fekel et al. (1999) presented the orbital elements, re-
fined the orbital period to 22.62293 days and confirmed the
G8III classification from Henry et al. (1995). A more com-
prehensive photometric study by Strassmeier et al. (1999)
witnessed a continuous decrease of its light-curve ampli-
tude from 0.m12 in late 1996 to 0.m07 in mid 1997. Such
large changes are typical only for the most active stars. The
photometric period was confirmed to be 22.42±0.12 days.
The star was also detected as a variable star in the Hippar-
cos epoch photometry with a period of 22.32 days (Koen &
Eyer 2002). Just recently, Erdem et al. (2009) presented new
multi-band CCD photometry acquired in 2006 and 2007.

� Based on data obtained with the Amadeus T7 Automatic Photoelectric
Telescope at Fairborn Observatory, jointly operated by the University of
Vienna and AIP, the Tennessee State University T3 0.4 m APT at Fairborn
Observatory, operated by Tennessee State University, and the telescopes of
the Ege University Observatory in Izmir.
�� Corresponding author: orkun.ozdarcan@ege.edu.tr

Weber et al. (2001) presented the first (and so far only)
Doppler images of HD 208472, based on observations taken
at the U.S. National Solar Observatory between 1996 and
1997. These images were refined and discussed in more
detail in Weber (2004) and Weber et al. (2005). All maps
showed pronounced spot activity located at low to inter-
mediate latitudes. No polar spot, as seen on many other
rapidly-rotating giants, was observed. While a sheared-
image, line-profile inversion suggested anti-solar differen-
tial rotation with a differential-rotation coefficient of α =
−0.04±0.02, a direct cross-correlation analysis of the three
available Doppler images revealed uncertainties larger than
the above value. Therefore, Weber (2004) and Weber et
al. (2005) did not claim to have resolved differential rota-
tion of HD 208472. For comparison, a summary of existing
Doppler images is given in Strassmeier (2009).

In this paper we present and analyze 17 consecutive
years of time-series photometry of HD 208472. The sam-
pling is such that we can easily see the rotational modu-
lation within every one of the 17 observing seasons. Such
unique data sets are possible with the advent of automatic
photometric telescopes (APTs) and their continuous opera-
tion, e.g., at Fairborn Observatory (Genet et al. 1986; Henry
1995a; Granzer et al. 2001). We present and briefly describe
the various telescopes and instrumental set ups in Sect. 2. In
Sect. 3, we consider the global, long-term behavior of the
spots on HD 208472, and in Sect. 4, we analyze the rota-
tional modulation in the 17 annual light curves. We present
a summary and our conclusions in Sect. 5.
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Fig. 1 Seventeen years of V -band photometry of HD 208472 (upper panel) together with all available color indices (lower panels).
Open squares denote data from the TSU 0.40 m APT, open triangles denote data from the 0.75 m Amadeus APT, and filled circles
represent EUO data.

2 Observations and data reductions

Photometry was collected from three sources as summa-
rized in Table 1. Firstly, the TSU 0.40 m APT, located at
Fairborn Observatory in southern Arizona, produced a con-
tinuous 17-year set of Johnson B and V measurements
since 1992. For details on the data reduction procedures
and performance of this telescope see Henry (1995b). Sec-
ondly, a total of 13 years of continuous Johnson-Cousin VIC

data, beginning in 1996, were acquired with the 0.75 m Vi-
enna University/AIP APT “Amadeus”, also located at Fair-
born Observatory. The Vienna/AIP APT is optimized for
the red part of the spectrum with an EMI-9828 phototube
and Johnson-Cousins filters. For more details see Strass-
meier et al. (1997). Thirdly, numerous Johnson UBVR and
Strömgren uvbyβ observations were made between 1996
and 2010 with the 0.48 m Cassegrain (A48) and the 0.30 m
Schmidt-Cassegrain (T30) telescopes at Ege University Ob-
servatory (EUO). An Optec SSP-5 photometer was used on
both EUO telescopes.

Nightly means of the EUO observations were created
from 6–8 individual readings and were corrected for atmo-
spheric extinction as described in Hardie (1962). Its preci-
sion of a nightly mean was usually below 0.m01 in V . Trans-
formation of the EUO observations to the standard Johnson
and Strömgren systems was performed with coefficients de-
termined from the 2009 observations with the SSP-5 pho-
tometer on telescope T30. Nine stars from the list of An-
druk et al. (1995) were observed for the Johnson passbands;
15 stars from the catalogue of Hauck & Mermilliod (1995)
were used for the Strömgren passbands. We list the trans-
formation coefficients in the appendix.

HD 208916 was used as comparison star for both
the TSU and the EUO data. The Vienna/AIP APT used
HD 208431 as its comparison star but the TSU/EUO comp
star, HD 208916, as the check star. Therefore, we employed
the variable-minus-check star differential magnitudes from
the Amadeus APT to place all the observations on the same
brightness scale.

www.an-journal.org c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Table 1 Summary of photometric observations. σext(V ) de-
notes the average external precision of the data set in millimag-
nitudes in the V bandpass. N is the total number of data points.
Δt is the time coverage.

Telescope Filters Δt N σext

0.40 m TSU APT BV 1992.5– 1691 4
2009.99

0.75 m Amadeus APT VIC 1996.8– 1418 3.2
2010.1

0.48 m EUO A48 BVR 1996.5– 66 6
1997.7

0.30 m EUO T30 BVR 2001.5– 64 6
2001.7

0.30 m EUO T30 UBVR 2006.5– 132 8
2009.9

0.30 m EUO T30 uvbyβ 2009.59– 36 7
2009.81

3 Global photometric analysis

3.1 Brightness and color variations

Figure 1 shows all 17 years of V -band photometry of HD
208472 together with all available color indices. A long-
term trend in the sense of a continuous increase of the over-
all brightness by ≈0.m1 with time is evident. Also note that
the light-curve minima increased more dramatically than
the light-curve maxima. Usually, the maximum light levels
remained fairly stable except during times when consider-
able amplitude changes were observed. For the first half of
the whole data (from 1992 to 2001), the mean brightness
seems relatively constant when compared to the individual
light-curve amplitudes. During the second half (from 2001
to 2009), the light-curve amplitudes seem relatively con-
stant while the mean brightness dramatically changed. In
any case, the assumption of a constant amplitude and aver-
aged brightness would cause slightly erroneous astrophysi-
cal parameters if derived solely from photometric data (see
Sect. 3.3 and Fig. 4).

All color indices get systematically bluer towards the
end of our data in early 2010. Not too much can be said
about (U − B) and (V − R) due to the relative sparsity of
data but the trend is even evident in these indices. On the
other hand, when (B−V ) and (V − IC) are compared, it is
seen that the red color shows on average more pronounced
variations than the blue color, which indicates that the vari-
ations are dominantly due to less and less cool spots, rather
than more warm plages or faculae.

3.2 Mean brightness, amplitudes and the unspotted
brightness

To investigate the seasonal changes of the mean brightness,
the light-curve amplitudes and the photometric period, we
divided the V data into 35 subsets. We obtain the aver-
age of the maximum and minimum magnitudes separately

Fig. 2 Amplitude-brightness relations in Johnson V . The top
panel shows the peak-to-peak amplitudes plotted with respect to
the respective brightness minimum. The line is a linear fit to the
data of the upper envelope. Its zero point indicates the unspotted
magnitude where the amplitude becomes zero (V ≈ 7.m28). The
bottom panel plots the mean V brightness versus the peak-to-peak
amplitude. It indicates a weak trend that larger amplitudes occur
when the star is fainter.

in each subset and then calculate the average of the mean
maximum and the mean minimum magnitudes and denote
it the mean brightness for corresponding data set. To cal-
culate light curve amplitudes of the sets, we consider the
differences between mean maximum and mean minimum
magnitudes in each set. In Fig. 2, we show the mean bright-
ness versus the light curve amplitude (upper panel) and the
light curve amplitude versus the minimum light level (lower
panel). The decrease of the mean brightness with increased
amplitude indicates again the preference of cool spots over
warm, faculae-like structures on the stellar surface. This be-
comes even more evident when individual light curves are
investigated both in brightness and color (see later Sect. 4).
Color indices get redder at times that correspond to light
minima.

The minimum brightness versus amplitude plot in Fig. 2
shows that the star appears generally brighter when the am-
plitude is smaller. By using the method given by Oláh et
al. (1997), we can estimate the unspotted brightness, i.e.
the brightness when the amplitude is zero. For that purpose,
we consider the points that define the upper envelope (open
squares in Fig. 2) and apply a linear fit to them. The fit in-
tersects the minimum-brightness axis at about 7.m28, where
the amplitude would be zero, i.e., the star is unspotted. That
value almost coincides with the observed maximum light
level during the year 2009/10. Therefore, we may state that
the star was at, or very close to, its unspotted brightness in at
least that observing season. The long-term V-amplitude de-
crease also suggests a decrease of the spotted area, while the
additional blueing of the average color variations suggest an
increase of the spot temperature towards 2010. Combining

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org
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Fig. 3 HD 208472 in the UBV color-color diagram. The open
triangle (�) represents the observed color values from Table 2.
The dashed line is its reddening line with a slope of 0.72. The plus
sign (+) shows the place of the star after the U − B and B − V
excesses were removed. The dashed-dotted line shows its redden-
ing. Standard-star data were taken from Drilling & Landolt (2000)
and are shown as filled circles for main sequence stars, crosses for
supergiants and open squares for class-III giants.

these changes with the overall brightness variation, we con-
clude that the activity level of the star considerably changes
with time. We will model this behavior more quantitatively
in Sect. 4.

3.3 Interstellar reddening and astrophysical
parameters

As HD 208472 is a class III giant, it is important to deter-
mine the E(B − V ) color excess accurately in order to find
the intrinsic photometric indices and therefore the star’s ef-
fective temperature. Unfortunately, the galactic coordinates
of the star, � = 92.◦8408, b = −7.◦9172, do not permit to
use any particular extinction law because the extinction can
not be determined reliably for this galactic latitude range
of −10◦ < b < 10◦. At this point, we rely on our standard
Johnson UBVRI measurements during the year 2009, when
the star was close to its unspotted brightness, as determined
above. We then calculate the unspotted brightness and the
colors, both for Johnson and Strömgren data, from the max-
imum brightness level in 2009 and list them in Table 2.

Figure 3 shows the star in the UBV color-color diagram
by assuming E(U−B)/E(B−V )=0.72 (open triangle) and
with respect to the standard-star data from Drilling & Lan-
dolt (2000). The resulting reddening would be E(B − V ) =
0.m248 and the corresponding (B − V )0 is 0.m842. Such a
blue B−V would indicates a G4–5 spectral type rather than
the G8(III) classification obtained by Henry et al. (1995),
the latter based of high-resolution spectroscopy. In fact, we

Table 2 Unspotted brightness and colors of HD 208472 (from
2009 observations).

Johnson Strömgren

V = 7.m323± 0.m007 y = 7.m267± 0.m010
U − B = 0.m682± 0.m068 b − y = 0.m650± 0.m013
B − V = 1.m090± 0.m012 m1 = 0.m170± 0.m028
V − R = 0.m739± 0.m010 c1 = 0.m420± 0.m074
V − IC = 1.m106± 0.m020 Hβ = 2.m650± 0.m034

Table 3 Dereddened, unspotted brightness and colors of HD
208472.

Johnson Strömgren

V0 = 6.m929 y0 = 6.m873
(U − B)0 = 0.m940 (b − y)0 = 0.m560
(B − V )0 = 1.m053 (m1)0 = 0.m140
(V − R)0 = 0.m640 (c1)0 = 0.m400

believe that HD 208472 exhibits a U −B and B−V excess
that could be the result of bright chromospheric structures
like faculae. Amado (2003) investigated the effects of chro-
mospheric activity on the mean colors of active late-type
stars and suggested a mean excess value 0.m35 in U −B and
0.m09 in B − V for luminosity class III giants. By remov-
ing this mean excess from the U − B and B − V colors of
HD 208472 (the revised U − B and B − V values are then
1.m032 and 1.m180, respectively) the resulting E(B − V ) is
0.m127, instead of 0.m248, and leads to (B − V )0 = 1.m053.
This color indicates a G8-K0 spectral type, in better agree-
ment with the result of Henry et al. (1995). With E(B−V ) =
0.m127, we also calculate the unreddened Strömgren bright-
ness and colors using the relations in Fitzpatrick (1999) and
references therein (see his Table 2). Our final de-reddened
brightness and colors of HD 208472 are summarized in Ta-
ble 3.

The effective temperature of the star is estimated from
(B − V )0 to be 4540 K according to the calibration
by Drilling & Landolt (2000), 4750 K according to the
calibration by Flower (1996), and 4790 K according to
Gray (2005). In this paper, we adopt the calibration by
Flower (1996) and use 4750 K for our further analysis. Its
typical error is 100 K for a star of this color. Metallicity
can be determined from the Strömgren (b − y)0 and (m1)0
indices. With the aid of the relations given, e.g., by Hilker
(2000), we find [Fe/H] = –0.50±0.25. Due to its large error,
we just interpret this metallicity to be subsolar. There is a
clear need for a spectroscopic analysis to either confirm or
to refine this [Fe/H] value.

By combining our photometry with the refined Hippar-
cos parallax of 6.55 ± 0.53 mas (van Leeuwen 2007), we
calculate distance and absolute brightness and list them in
Table 4. For the inclination, we adopt the v sin i value of
19.7±1 km s−1 from Fekel et al. (1999), assume the orbital
period to be equal to the rotation period, and a radius from

www.an-journal.org c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Table 4 Absolute photometric parameters of HD 208472. The
bolometric correction, B.C., was taken from Flower (1996).

Parameter Value

V0 6.m929
E(B − V ) 0.m127
AV 0.m394
R (assumed) 3.1
(B − V )0 1.m053± 0.m012
(b − y)0 0.m560± 0.m013
Teff (K) 4750± 100
B.C. –0.437
Hipparcos distance (pc) 153+13

−11

MV 1.m011± 0.m25
Mbol 0.m574
v sin i (km s−1) 19.7± 1.0
Inclination (◦) 60± 8
Radius (R�) 10.09± 0.56
Luminosity (L�) 46± 3
[Fe/H] –0.50± 0.25

the Stefan-Boltzmann law by using a solar Mbol value of
4.m74, and obtain 60◦. Note that the uncertainty of the incli-
nation of just 8◦ is mainly from the uncertainty of the v sin i
measure, the actual error is likely larger.

3.4 A spot cycle from mean brightness variations

Undulating variations in overall brightness of the star be-
yond the simple rotational modulation may indicate the ex-
istence of a spot cycle analogous to the solar 11-year cycle.
Although the first half of the whole light curve (from 1992
to 2001) shows almost none or at least very small varia-
tions of the mean brightness, but rather large variation in
individual light curve amplitudes, assuming a truly constant
mean brightness might oversimplify the situation because
we observe a clear long-term trend in mean brightness. We
applied a standard Fourier transform (FT) analysis to the V
data by using the Period04 program (Lenz & Breger 2005).
The brightening trend in Fig. 1 can be represented by a har-
monic with a period of 21.5±0.5 years, significantly longer
than the 17 years of time coverage of the data. Neverthe-
less, it might at least be an indication of a cycle like the
Gleissberg cycle for the Sun (e.g. Kolláth & Oláh 2009).
We then prewhiten the data with that period and treat the
residuals again by means of a Fourier fit and find a period of
6.28±0.06 years. This period seems reasonably well estab-
lished with respect to the time coverage of the data and thus
suggests a true spot cycle. Figure 4 shows the mean bright-
ness variation and the residuals after pre-whitening with a
21.5-yr period (lower panel) together with the fit by a 6.28-
yr harmonic.

3.5 Photometric period variations

Straightforward solar-stellar analogy explains variations in
the photometric period as being due to latitudinal migra-

Table 5 Photometric periods (with errors) in days, the light
curve V amplitudes in magnitudes, and the residual V brightness
with respect to the 21.5-years approximation as shown in the top
panel of Fig. 4. Out of the 35 data subsets, just data set #16 did not
allow to determine a unique period due to its sparse data coverage.

Set Year Period Amplitude Residuals
(day) (mag) (mag)

1 1992.82 22.573 ± 0.091 0.273 –0.003
2 1993.40 22.437 ± 0.091 0.213 –0.016
3 1993.84 22.482 ± 0.046 0.329 0.017
4 1994.39 22.573 ± 0.092 0.382 0.030
5 1994.90 22.528 ± 0.091 0.294 0.020
6 1995.42 22.528 ± 0.046 0.309 0.026
7 1995.87 22.573 ± 0.092 0.302 0.018
8 1996.42 22.528 ± 0.091 0.183 0.022
9 1996.93 22.124 ± 0.176 0.118 0.025

10 1997.47 21.524 ± 0.209 0.079 –0.010
11 1997.86 22.899 ± 0.142 0.170 –0.019
12 1998.39 22.391 ± 0.135 0.192 –0.031
13 1998.87 22.573 ± 0.092 0.155 –0.006
14 1999.40 22.124 ± 0.220 0.086 –0.004
15 1999.86 22.124 ± 0.220 0.077 0.010
16 2000.40 . . . . . . . . .
17 2000.86 22.619 ± 0.184 0.081 0.043
18 2001.48 22.391 ± 0.090 0.220 0.040
19 2001.86 22.036 ± 0.131 0.216 0.037
20 2002.42 22.758 ± 0.093 0.213 0.009
21 2002.86 22.302 ± 0.134 0.126 –0.007
22 2003.45 21.734 ± 0.340 0.089 –0.022
23 2003.83 22.302 ± 0.179 0.089 –0.025
24 2004.42 22.758 ± 0.280 0.100 –0.043
25 2004.83 22.528 ± 0.183 0.097 –0.007
26 2005.42 22.482 ± 0.182 0.086 –0.031
27 2005.83 22.604 ± 0.245 0.100 –0.003
28 2006.39 22.666 ± 0.139 0.199 0.059
29 2006.82 22.391 ± 0.090 0.127 0.051
30 2007.42 22.391 ± 0.090 0.165 0.061
31 2007.88 22.437 ± 0.091 0.120 0.077
32 2008.42 22.852 ± 0.282 0.063 0.056
33 2008.83 22.212 ± 0.844 0.055 0.042
34 2009.40 22.346 ± 0.180 0.106 –0.043
35 2009.80 22.302 ± 0.090 0.138 –0.046

tion of spots on a differentially rotating surface (Hall 1972;
Strassmeier & Bopp 1992). The migration could be induced
gradually due to, e.g., meridional circulation or could be
abruptly when a current spot’s lifetime ends and another
spot at a different latitude appears. However, complex evo-
lutionary morphology changes may also contribute to (pho-
tometric) period variations. Due to the shearing force of a
differentially rotating surface, the resulting break up of large
spots or spot clusters that spread over a certain latitude range
may also give rise to photometric period variations (Strass-
meier et al. 1994; Fekel et al. 2002; see also the starspot
reviews by Berdyugina 2005 and Strassmeier 2009).

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org
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Fig. 4 Mean brightness variations (dots, upper panel) and their residuals (dots, lower panel). The lines are harmonic fits. In the upper
panel, the continuous line represents a 21.5-yr period (rather a trend due to the limited time span of the data), while the dashed line
represents a superposition of this and a 6.28-yr period. In the lower panel, we removed the trend and plot the data again together with
the 6.28-yr period as a solid line.

Fig. 5 Photometric period, mean brightness and amplitude variations (from top to bottom) of HD 208472 as a function of time. The
horizontal line in the upper panel indicates the orbital period. Note that the middle panel shows the same residual as in Fig. 4 while the
lower panel plots the peak-to-peak light curve amplitudes. No photometric period could be found for set #16 (year 2000.40) because the
amplitude is very low and not well determined at that time.

FT is usually used to determine photometric periods
but in case of active stars it is problematic because most
spotted stars show asymmetrically-shaped light curves. For
asymmetrical light curves, it is more efficient to use statis-
tical methods, like Phase Dispersion Minimization (PDM;

Stellingwerf 1978) or Analysis of Variances (ANOVA;
Schwarzenberg-Czerny 1996). For HD 208472, we adopt
the ANOVA method to determine the photometric period for
all 35 subsets. The method uses periodic orthogonal poly-
nomials to fit the light curves and then applies the variance

www.an-journal.org c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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a)

b)

Fig. 6 a) O − C diagram of the light-curve minima with respect to the orbital period. The straight line is a linear fit to the data
according to Eq. (2). The lower panel shows the residuals. The different symbols indicate the 10 data sets that appear to fall on a nearly
linear slope. b) The mean photometric periods from the 10 data subsets marked in the panel above.

statistics to improve the quality of the fit. We use the PER-
ANSO software (Vanmunster 2007) to apply the method.
Before the actual period analysis, we first remove the bright-
ening trend by approximating it with a 21.5-year sinusoidal
period. We believe that this brightening trend stems from a
symmetric activity component which we can not resolve on
the stellar surface with photometric data, e.g., like a band of
spots around the star, or a polar cap-like spot (see Sect. 4.3).
The resulting seasonal periods, residuals and amplitudes
from the pre-whitened data are shown in Fig. 5 along with
their respective errors. The numerical values are listed in Ta-
ble 5. A large number of the periods seem to fall below the
orbital period of the system. In case we assume a solar-like
differential rotation pattern, the co-rotation latitude would
be located at mid-to-high latitudes.

Figure 5 also shows that there are times of jumps of the
photometric period and that they may be related to times of
maximum mean brightness as well as minimum amplitude.
This is indicated by the vertical dashed lines in Fig. 5. The
period jumps are possibly systematic and can be brought
in agreement with the 6.28-yr period of the mean bright-
ness, which we interpreted to be due to a starspot cycle.
Of course, one has to keep in mind that the period errors
will increase when the amplitudes decrease, which com-

plicates the interpretation. The early data between 1992–
1996 showed the highest amplitudes and thus the most
well-defined periods. While the amplitude dramatically de-
creased until 1997, the mean brightness started to increase
from 1994 on. Therefore, the six-year period still seems a
reasonable and solid estimate.

We see these period variations also from an O−C anal-
ysis of light-curve minima with respect to the orbital period.
The latter is assumed to be constant during the epoch of our
photometric observations. We take the time of the first light-
curve minimum in 1992 as the reference epoch and assume
the orbital period to be the stellar rotation period. This ref-
erence epoch and the orbital period from Fekel et al. (1999)
give the following ephemeris (Eq. 1):

T0(HJD) = 2 448 890.9394+ 22.d62293×E. (1)

The resulting O − C diagram is shown in the upper panel
of Fig. 6a. A linear regression fit results in the averaged
ephemeris of Eq. (2):

T0(HJD) = 2 448 893.468 + 22.d4149×E. (2)
(±0.533) (±0.0035)

The resulting period indicates that most of the spots had
periods averaged around 22.4149±0.0035 days. This value
is in principle agreement with the 22.54±0.05-day period

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org
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P=0.1824ln(A)+22.779

Fig. 7 Left panel: photometric period versus the mean brightness. There appears to be no particular correlation between the mean
brightness and the photometric period other than that most photometric periods are shorter than the orbital period. The dashed-dotted
line indicates the unspotted brightness level. Right panel: the peak-to-peak amplitude versus the photometric period. Dashed lines in
both plots indicate the orbital period. The continuous line in the right panel is a logarithmic fit to the distribution as indicated in the insert
(A =amplitude, P =photometric period). It indicates the trend that the amplitude from the rotational modulation becomes smaller when
the photometric period is shorter.

that has been given by Henry et al. (1995) from their period
analysis of an early TSU subset of the present data in that
it is also shorter than the orbital period. It supports the pic-
ture that spots were preferentially located at latitudes either
below or above the co-rotation latitude, only depending on
whether the surface of HD 208472 rotates according to a
solar-like differential rotation law or an anti-solar law in the
sense that the polar regions would then rotate faster than the
equatorial regions.

After removing the linear fit according to Eq. (2), we
show the new residuals, dubbed O − C II, in the lower
panel of Fig. 6a. These residual slopes allow a determina-
tion of mean photometric periods for a given time range. For
that purposes, we divide the residuals into 10 subsets by ex-
tracting portions of data that appear with a linear slope. Ev-
ery slope would then give the difference between its best-fit
photometric period and the grand mean period determined
above. The resulting 10 periods are plotted in Fig. 6b and
listed in Table 6. The distribution of periods appears sim-
ilar to the ANOVA result in Fig. 5 (top panel), and can
be grouped again as before. We take this as confirmation
that the period variations are indeed real and that the abrupt
changes are also seen from the O − C analysis.

4 Spot modelling

4.1 A period-amplitude-brightness relation?

Before we attempt to model the individual light curves, we
investigate whether there are relations between the pho-
tometric period, the light curve amplitude and the mean
brightness of the star, just as observed in the solar case
and already indicated in Fig. 2. In case of the Sun, rota-
tional periods of spots change gradually as the sunspot cy-
cle progresses (see Fröhlich 2009). On the other hand, the

Table 6 Mean photometric periods and their errors from the
O − C analysis in Fig. 6b.

Year Period (day)

1993.93 22.511± 0.007
1995.85 22.632± 0.021
1997.30 22.038± 0.086
1998.80 22.488± 0.016
2001.71 22.284± 0.027
2003.49 22.216± 0.038
2005.20 22.613± 0.030
2007.20 22.473± 0.011
2008.60 21.823± 0.080
2009.64 22.310± 0.113

mean brightness (or irradiance) of the Sun starts to increase
from the beginning of the cycle towards the middle due to
the more dominant facular contribution with respect to that
from spots, and decreases after maximum sunspot activity
towards the end of cycle. At times of maximum activity we
would observe larger light curve amplitudes if we observed
the Sun as a star, and the photometric period would have
some average value between the maximum period (≈28
days) and the minimum period (≈25 days).

In Fig. 7, we show the distribution of the periods ver-
sus the mean brightness (left panel), and the light-curve
peak-to-peak amplitude versus the period (right panel) for
HD 208472. The mean V brightness does not show any
particular relation to the photometric period other than that
most of the periods are shorter than the orbital period. The
photometric periods generally decrease with the peak-to-
peak amplitude, which may indicate the end (or start) of
a particular spot cycle (or lifetime cycle) on HD 208472.
However, any amplitude variation might be also a conse-
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B-V

V-Ic

Fig. 8 Spot temperatures from B − V (filled circles) and V − IC (open circles). The horizontal dashed line indicates the unspotted
photospheric temperature that we assume equal to the effective temperature of the star. Note that no IC observations were available
before 1996. For 2009.40 (data set #34), no B observations were available.

Fig. 9 An example V data set modeled with two spots (upper panel) and its residuals from the model fit (lower panel). The recon-
structed spot configuration is shown in the right panel in spherical projection. Note that the residuals are systematic which just means
that there was spot evolution during the time coverage of this data set (data set #11, 1997.86).

quence from a simple spot redistribution on the surface, e.g.
via a break up due to the shear from differential rotation, but
for HD 208472 the cyclic mean brightness variation in time
supports the cycle interpretation.

4.2 Spot-model assumptions

We assume a two-spot distribution throughout the entire ob-
serving record for HD 208472. Clear asymmetries and the
sometimes doubled light-curve minima per rotation are in-
dicative of a distribution of favorably two large spots or two
conglomerates of smaller spots, i.e. two active regions. It
is based on the two spot model from Budding (1977) and
Dorren (1987), who had negligible differences in their ap-
plication though. We chose the model of Budding (1977)
as implemented by Ribárik et al. (2003). In practice, we ap-
plied the code SPOTMODEL (Ribárik et al. 2003). This code

allows to fit three parameters per spot (latitude, longitude,
and radius) by using the Marquardt-Levenberg non-linear
least squares fitting algorithm (Levenberg 1944; Marquardt
1963). The code is also able to determine spot temperatures
from two color data and we employ our B − V and V − IC

color curves throughout the 17 years of observation to do
so. Other parameters that are assumed constant are the in-
clination of the rotational axis of 60◦ (see Sect. 3.3) and
the bandpass-dependent, linear limb-darkening coefficients
from van Hamme (1993).

4.3 Results

All spot modelling is done with the residual light curves af-
ter removal of the brightening trend described in Sect. 3.5.
First, we calculate spot temperatures from B − V and, for
data taken after 1996, also from V − IC. The resulting spot
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Fig. 10 The longitudinal distribution of the spots of HD 208472 (upper panel). The continuous line represents the longitudes of the
apsidal line of the binary system while the two dashed lines just restrict one rotational cycle. The vertical dot-dashed lines correspond to
times when comparably abrupt changes occurred and agree with the times already indicated in Figs. 5 and 6. The lower panel compares
the cumulated V light curves for these intervals according to the ephemeris in Eq. (3).

temperatures for every (annual) data subset are plotted in
Fig. 8. No significant cyclic or dramatic changes are seen in
these spot temperatures throughout the years, except some
scattering due to the sometimes very different peak-to-peak
amplitudes. Intrinsic scatter comes from the different sensi-
tivity of the B and IC bandpasses to faculae and their time-
dependent appearance, e.g., in around 1997 or around 2006.
Such scatter likely causes a few hundred Kelvins of error, in
particular if the B bandpass is involved. We adopt an grand
average spot temperature of 3900± 275 K from B −V and
V − IC. The rms of 275 K is higher than the typical error
of a seasonal spot temperature but includes intrinsic uncer-
tainties like faculae and thus represents a fairly conservative
value. Then, by assuming this spot temperature to be con-
stant throughout the 17 years of observations, we fix the flux
ratio between spot and unspotted photosphere, kw, to 0.454
and adopt it for the further modelling.

Before modelling each individual light curve, we try to
constrain the expected spot latitudes. Adopting solar anal-
ogy, we implement a solar type differential rotation law on
the surface of HD 208472. Because spot longitudes and
radii of spots are better constraint than their latitudes, we
consider the photometric periods from Table 5 (shown in
Fig. 5) with respect to the co-rotation period and estimate
preliminary latitudes for each of the spots and keep them
fixed. We then run SPOTMODEL and calculate the remain-
ing free parameters iteratively (longitudes and radii). After
that, we take the latitudes as free parameters and, together

with the longitudes and radii from the previous step, run
the code again to achieve the final models. A sample light-
curve fit with a representative image of the distribution of
the spots is shown in Fig. 9, the actual numbers are summa-
rized in Table 7.

We emphasize that the intrinsic spot changes due to
their short-term evolution was not taken into account in our
modelling. During some of the data sets, systematic varia-
tions of the light-curve shape indicated such intrinsic spot
changes from one stellar rotation to the next, e.g. for the
season shown in Fig. 9. Therefore, just an average “map” is
obtained for each data subsets. The code always gives the
model that has the statistically minimum error but some-
times these maps may not be the best representation of the
spot distribution due to its inherent model limitations (circu-
lar spots). Solutions with symmetric polar caps also do not
seem appropriate since previous Doppler images indicated
just high and low latitude spots but no polar caps (Weber
2004) and rotationally-modulated photometry is not sensi-
tive to such spots. For the years when the light curves ap-
peared close to sinusoidal, like in 1994, 1995, 1996, and
2001, we repeated the calculations with iteratively altered
latitudes. We were able to model 34 out of the 35 subsets.
Data set #16 (year 2000.40) has very small amplitudes and
no significant fit was achieved for that set. The final numer-
ical modelling results are given in Table 7.

The spot longitudes are given with respect to the orbital
ephemeris from Fekel et al. (1999) but with their epoch sub-
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Table 7 Numerical results from the two-spot modelling of the
34 individual data sets. θ is the spot latitude ranging between
−90◦and +90◦ (zero denotes the equator), ϕ is the longitude of
the spot in degrees and r is the spot radius in degrees on the stellar
surface.

Spot A Spot B

Year θ ϕ r θ ϕ r
(◦) (◦) (◦) (◦) (◦) (◦)

1992.82 42 242 33 48 340 23
1993.40 43 269 33 30 2 12
1993.84 47 300 40 18 207 18
1994.39 38 318 42 19 222 22
1994.90 28 347 34 35 244 28
1995.42 47 14 36 41 276 26
1995.87 49 355 38 38 272 20
1996.42 44 5 27 59 268 21
1996.93 55 31 25 51 172 9
1997.47 42 83 18 22 260 12
1997.86 42 131 28 60 268 22
1998.39 41 132 25 4 214 20
1998.87 59 166 28 50 78 17
1999.40 63 167 23 7 39 8
1999.86 14 214 16 46 115 10
2000.40 . . . . . . . . . . . . . . . . . .
2000.86 64 128 22 2 348 21
2001.48 45 49 26 39 123 22
2001.86 63 116 35 52 23 9
2002.42 26 155 29 43 55 20
2002.86 44 163 23 43 55 20
2003.45 51 125 21 20 238 15
2003.83 53 298 22 45 167 20
2004.42 47 211 23 37 351 19
2004.83 54 234 21 56 136 16
2005.42 58 266 21 21 165 16
2005.83 33 169 20 46 319 17
2006.39 41 169 31 31 19 11
2006.82 17 193 24 1 24 13
2007.42 35 221 28 3 42 11
2007.88 46 229 24 48 34 9
2008.42 60 314 19 55 184 17
2008.83 53 309 16 52 92 9
2009.40 38 2 24 35 135 23
2009.80 11 15 25 59 166 20

tracted by one fourth of the orbital period (the star has zero
eccentricity),

T0(HJD) = 2 449 246.7353+ 22.d62293×E . (3)

Fekel et al.’s epoch is a time of maximum radial velocity and
at that time the projection of the apsidal line of the system
is perpendicular to our line of sight. Our aim is to compare
the spot locations more easier, e.g., if the orbital phase in
Eq. (3) is 0.0 or 0.5, then the spots are located at the sub-
stellar point or 180◦ opposite, respectively.

Figure 10, upper panel, shows the resulting longitudes
of both spots versus time. We adopt the projected apsidal
line of the system as the reference longitude and choose
counter-clockwise direction for increasing longitudes. We

added 360◦ to the longitudes of those spots that have lon-
gitudes close to a 0◦ or 360◦, for better viewing purpose.
The most striking result is that the distribution of the spot
longitudes is not random but spots tend to always occur on
hemispheres facing the observer during orbital quadrature.
Moreover, it seems that about every six years the spots move
their preferential location to the respective other hemisphere
which nicely fits to our 6.2-year spot-cycle estimate from
the mean brightness. Another evidence for this is shown in
Fig. 10, lower panel. By following the phased light curves of
consecutive years, these changes of the spot longitudes ap-
pear systematic. We interpret this with the well-known “flip-
flop” phenomenon (e.g. Korhonen & Järvinen 2007; Elstner
& Korhonen 2005; Järvinen et al. 2005). Furthermore, the
times when the spots changed their preferential hemisphere
correspond to times when the light curve amplitudes were
smallest and when abrupt changes of the photometric peri-
ods were observed. During these times the star is also close
to its relative maximum brightness, suggesting a vanishing
overall spottedness at each end of the previous cycle and the
start of a new one. Therefore, we interpret this as evidences
to support our cycle estimation of 6.2 years. Accordingly, a
new cycle should have just begun around 2009/2010.

4.4 Differential surface rotation

We use the photometric periods and latitudes of the corre-
sponding data subsets to estimate the differential surface
rotation of HD 208472. By assuming a solar-type, sine-
squared law of the form in Eq. (4),

Pθ =
Pequ

(1 − α sin2 θ)
, (4)

the differential-rotation coefficient α ≡ ΔP/P = (Pθ −
Pequ)/Pequ and Pequ is obtained iteratively from each
spot (θ denotes the spot latitude and Pequ the equato-
rial rotation period). Application of a simple linear least-
squares method leads to values of α = –0.003±0.011 and
Pequ = 22.455±0.134 for spot A, and +0.011±0.009 and
22.336±0.094 for spot B. By taking the average from both
spots, our best-guess values are Pequ = 22.395±0.114 days
and α = 0.004±0.010. This α is basically a nondetection of
differential rotation and disagrees with the value from the
sheared-image Doppler reconstruction by Weber (2004) of
−0.04. Note though that photometry can not determine the
true sign of the differential-rotation parameter and is implic-
itly assumed positive here. However, its amount – if posi-
tive or negative – suggests differential rotation significantly
weaker compared to the Sun.

5 Summary and conclusions

Chromospherically active stars have light variations caused
by spots rotating in and out of view, enabling the rotation
period of the star to be determined for the surface lati-
tude of the spot. However, such latitude dependent rota-
tion will smear out the observed rotational period if one
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has only short chunks of photometry and it takes long time
coverage and good sampling to resolve these periods. By
analyzing our 17 years of time-series photometric data of
HD 208472, we explored the relation between photomet-
ric periods, light-curve amplitudes, mean brightness and the
color of the star, spot latitudes and longitudes and arrived at
following results.

Firstly, we found evidence for a 6.28±0.06-yr bright-
ness cycle, which we interpret to be a stellar analog of the
solar 11-year sunspot cycle. There is also evidence for a sec-
ond, longer cycle, approximated with a 21.5±0.5-yr period,
which could be interpreted as the stellar analog of the solar
Gleissberg cycle (Kolláth & Oláh 2009). While the long-
term mean brightness increases, all color indices tend to get
bluer and the rotationally modulated light-curve amplitudes
smaller. So far, the star had its maximum brightness level in
2010 and likely was then very close to being unspotted, in
agreement with the expectations from a cool spot model. On
the other hand, the latest data indicate that the brightness of
the star is still rising.

Secondly, we found that the distribution of the spot lon-
gitudes is not random but spots tend to always occur on
hemispheres facing the observer during orbital quadrature.
It appeared that about every six years the spots moved their
preferential location to the respective other hemisphere, in
agreement with the 6.2-year spot cycle obtained from the
mean brightness. We interpret this as evidence for a “flip-
flop” dynamo behavior (Elstner & Korhonen 2005) because
when the spots changed their preferential hemisphere the
light curve amplitudes were always the smallest and abrupt
changes of the photometric periods occurred. During such
flips, or flops, the star was always close to its relative maxi-
mum brightness, suggesting that we witnessed a spot mini-
mum. However, the 17 years of data allowed the monitoring
of just two such “flips” and at least one “flop”, and therefore
can not be taken fully conclusive at that point. Because a flip
was possibly observed in 2009/10, we predict an according
flop near 2015/16.

Thirdly, our two-spot modelling is consistent with a
differential-rotation coefficient of α = ΔP/P of 0.004±
0.010, almost fifty times weaker than for the Sun, but ba-
sically represents a non detection of differential rotation.
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A Transformation coefficients for the EUO
photometric data

Equations (A1) and (A2) are for the EUO Johnson and Strömgren
measurements, respectively:

V − v0 = −0.050(±0.017) × (B − V ) + 18.674(±0.013),

B − V = 1.115(±0.015) × (b − v)0 + 0.608(±0.008),

U − B = 1.063(±0.031) × (u − b)0 − 1.849(±0.064),

V − R = 1.174(±0.026) × (v − r)0 + 1.272(±0.021); (A1)

V − y = 0.046(±0.019) × (b − y) + 17.220(±0.007),

b − y = 1.028(±0.010) × (b − y)0 + 0.173(±0.03),

m1 = −0.175(±0.037) + 1.099(±0.137) × (m1)0 +

+ 0.031(±0.056) × (b − y),

c1 = 0.229(±0.035) + 1.042(±0.066) × (c1)0 −
− 0.049(±0.053) × (b − y),

Hβ = 1.110(±0.199) × (Hβ)0 + 0.581(±0.378). (A2)
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