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ABSTRACT

The classical B0.5e star � Cassiopeia is known to be a unique X-ray source by virtue of its moderate LX

(1033 ergs s�1), hard X-ray spectrum, and light curve punctuated by ubiquitous flares and slow undulations.
The peculiarities of this star have led to a controversy concerning the origin of these emissions: whether they
are from wind infall onto a putative degenerate companion, as in the case of normal Be/X-ray binaries, or
from the Be star itself. Recently, much progress has been made to resolve this question: (1) the discovery that
� Cas is a moderately eccentric binary system (P ¼ 203:59 days) with unknown secondary type, (2) the addi-
tion ofRXTE observations at six epochs in 2000, adding to three others in 1996–1998, and (3) the collation of
robotic telescope (Automated Photometric Telescope) B- and V-band photometric observations over four
seasons that show a 3%, cyclical flux variation with cycle lengths of 55–93 days. We find that X-ray fluxes at
all nine epochs show random variations with orbital phase, thereby contradicting the binary accretion model,
which predicts a substantial modulation. However, these fluxes correlate well with the cyclical optical varia-
tions. In particular, the six flux measurements in 2000, which vary by a factor of 3, closely track the interpo-
lated optical variations between the 2000 and 2001 observing seasons. The energy associated with the optical
variations greatly exceeds the energy in the X-rays, so that the optical variability cannot simply be due to
reprocessing of X-ray flux. However, the strong correlation between the two suggests that they are driven by
a common mechanism. We propose that this mechanism is a cyclical magnetic dynamo excited by a Balbus-
Hawley instability located within the inner part of the circumstellar disk. According to our model, variations
in the field strength directly produce the changes in the magnetically related X-ray activity. Turbulence asso-
ciated with the dynamo results in changes to the density (and therefore the emission measure) distribution
within the disk and creates the observed optical variations.

Subject headings: circumstellar matter — stars: emission-line, Be — stars: flare —
stars: individual (� Cassiopeiae) — ultraviolet: stars — X-rays: stars

1. INTRODUCTION

Since its discovery in 1867, � Cassiopeia has become the
prototype of the ‘‘ classical ’’ Be stars. However, while the
optical properties are representative of the class, its behav-
ior in the X-ray regime is not just unusual but so far unique.
Its mean LX is a few times greater than any other Be or
B-normal stars but at least a factor of 20 lower than in Be/
X-ray binaries. The X-ray light curve is especially interest-
ing in that it is composed of numerous, short-lived bursts
(with durations of 10 s to 1 minute) superimposed on a
background (‘‘ basal flux ’’) that varies in intensity by a fac-
tor of up to 3 over timescales ranging from hours to months.
The X-ray spectrum is hard, being consistent with a thermal
10.5 keV thin plasma, and it shows Fe lines at 6.7 and 6.9
keV.

In the past the commonly accepted explanation for the
X-ray emission involved mass accretion onto a putative
degenerate companion, either a neutron star (White et al.
1982) or a white dwarf (Murakami et al. 1986). There are

some problems with this interpretation (see Smith, Robin-
son, & Corbet 1998, hereafter SRC98, and Robinson &
Smith 2000, hereafter RS00, for discussions of the binary
hypothesis), and Smith (1995) published an alternative pic-
ture in which the anomalous X-rays were generated by ener-
getic flares near the star’s surface. To test this hypothesis,
SRC98 organized a coordinated observing campaign in
1996 March involving the Rossi X-Ray Timing Explorer
(RXTE) and the Hubble Space Telescope, where the God-
dard High Resolution Spectrograph (GHRS), with large
aperture, was used to obtain high time resolution spectra
covering 40 Å centered on the Si iv lines near 1400 Å. The
object of the program was to look for correlations between
X-ray variations and changes in the UV continuum and the
Si iv line profiles. Since any UV variations are likely to origi-
nate at or near the Be star, a strong correlation with the X-
rays would provide evidence that the X-rays are also emitted
from near the star.

The program proved to be highly successful and showed a
pronounced anticorrelation between the intensity of the
basal X-ray flux and the value of the UV continuum near
1400 Å (see SRC98), an anticorrelation with the Si iii and
Si iv (low-excitation) ions’ line strengths, and a direct corre-
lation with the high-excitation Fe v line strengths (Cranmer,
Smith, & Robinson 2000).

The basal X-ray flux from the 1996 March observations
was found to vary on a �10 hr timescale (Fig. 1a). UV
observations obtained during International Ultraviolet
Explorer (IUE) campaigns in 1982 and early 1996, com-
bined with the GHRS results, showed a UV continuum
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modulation of 27 hr. This is in agreement with the expected
rotation period of 22–30 hr given the star’s known v sin i
and estimated radius (see, e.g., Cranmer et al. 2000). Thus,
SRC98 suggested that the X-ray variations are attributable
to a rotational modulation of active magnetic complexes on
the stellar surface. To confirm this interpretation, theRXTE
was used on 1998 November 24–26 to search for a reoccur-
rence of the variation pattern over two rotation periods. A
summary of part of this time history is given in Figure 1b.
Comparison of the two panels of this figure discloses that
the light-curve characteristics changed markedly between
1996 and 1998. The 1998 fluxes were substantially lower
than those seen in 1996 March, while the timescale of varia-
tion had decreased to 3–4 hr. No clear signal for rotational
modulation was discovered (see RS00). However, RS00
found that the X-ray fluxes did undergo a partial cessation
every �7.5 hr. This behavior was intriguing since archival
IUE data showed marked strengthening of the high-velocity
Si iv and C iv wind features (discrete absorption compo-
nents) with the same cyclicity. The rapid timescale for the
basal flux variability also points to a rapid evolution of
the activity centers, which would mask any rotational
modulation.

The dramatic changes in these X-ray light curves were
unexpected. The authors concluded that more observations
were needed in order to quantify the timescale and form of
these variations. It was also hoped that the nature of the
variations could be better understood by comparing the
X-ray results with other parameters of the star, such as the
one-armed density enhancement in the Be disk, which is
known to be responsible for the 5–7 yr cyclic variations of
the H� emission profile (Telting & Kaper 1994; Berio et al.
1999). Thus, an observing program using the Automated
Photometric Telescope (APT) was initiated to monitor the
optical variability of � Cas in the Johnson B and V bands.
New RXTE observations were also carried out in 2000, con-
sisting of six time sequences spaced at increasing intervals
from 1 week to 5 months. It is these optical and X-ray data
that will be examined in this paper.

In x 2 we describe briefly the X-ray and optical observa-
tions and reduction procedures. The long-term variations

are then described in x 3. Here it is shown that both the
X-rays and optical fluxes show cyclic fluctuations on a time-
scale of 55–93 days. The X-ray and optical variations also
appear to be strongly correlated. The short-term variations
are then discussed in x 4. Here we examine the short-term
changes in the X-ray flux and compare them with similar
variations seen in the optical region.Many of the X-ray time
sequences appear to have broad fluxminima that are repeat-
able. These features are used as markers in attempting to
determine the stellar rotation rate. The time sequences are
also searched for the cyclic decreases in X-ray flux that were
found in previous data sets. In x 5 we discuss the consequen-
ces of the observations.

2. OBSERVATIONS AND DATA REDUCTION

2.1. X-Ray Data

The X-ray data were obtained with the RXTE satellite
using the Proportional Counter Array (PCA), which detects
photons in the 2–30 keV range. A summary of the observa-
tions is presented in Table 1. A total of six time sequences
were obtained, each approximately 27 hr in duration, which
is near the expected rotation period of the star. Since a pri-
mary goal of the program was to determine the timescale of
the long-term X-ray variations, the visits were spaced at
progressively increasing time intervals, ranging from 1 week
to 5 months.

The PCA data were reduced using standard procedures
within the FTOOLS reduction package, as described on the
RXTE project Cook Book Web site.6 The PCA has been
slowly aging over the years. In an effort to decelerate this
process the project periodically rests detectors by turning
them off. During our observations various combinations of
the PCA proportional counter units (PCUs), typically three,
were operating at any one time, and this reduced the effec-
tive total count rate from our target correspondingly. More
importantly, the energy dependence of the background
models for each of the detectors had diverged. In fact, on
2000 May 13, a month before our fifth visit, the propane
layer peeled away from the PCU0 unit. This event increased
the soft background level for that unit. A revised back-
ground model based on new calibrations of this unit was
not available at the time of our reductions. Therefore, we
reduced the net fluxes of our observations for each PCU
separately, and the color information from PCU0 was
ignored in our last two data sets. After the initial reductions,
the source count rate was adjusted to mimic that expected
from a full five-unit PCA, so that the values could be com-
pared with fluxes obtained during the 1996 and 1998 observ-
ing programs.

2.2. Optical Observations

Our photometric observations of � Cas were obtained
over four observing seasons between 1997 September and
2001 February with the T3 0.4 m Automated Photometric
Telescope at Fairborn Observatory in the Patagonia Moun-
tains of southern Arizona. The APT uses a temperature-
stabilized EMI 9924B bi-alkali photomultiplier tube to
acquire data through Johnson B and V filters. The APT is
programmed to measure stars in the following sequence,

Fig. 1.—Summary of RXTE observations taken in (a) 1996 March and
(b) 1998 November. Filled circles represent 16 s averages, while triangles
are 30 minute averages. The uncertainties in the data can be represented by
Poisson statistics. Thus, errors in the position of the triangles are much
smaller than the symbols. Each plot represents a single 27 hr rotation cycle.

6 Available at http://heasarc.gsfc.nasa.gov/docs/xte/recipes/
cook_book.html.

436 ROBINSON, SMITH, & HENRY Vol. 575



termed a group observation: K, sky, C, V, C, V, C, V, C,
sky, K, where K is a check star, C is the comparison star,
and V is the program star. We used HD 6210=HR 297
(V ¼ 5:80, B�V ¼ 0:58, F6 V) as the comparison star and
HD 5395=HR 265 (V ¼ 4:63, B�V ¼ 0:96, G8 IIIb) as the
check star for our observations of � Cas. Typically, two or
three group observations were acquired each clear night at
intervals of 2–3 hr. In the fourth observing season (2000/
2001), up to several dozen group observations were
obtained on four nights of more extensive monitoring. To
keep coincidence count corrections small for these bright
targets, a roughly 3.8 mag neutral-density filter was used for
all integrations during the second through the fourth
observing seasons. Integration times were 10 s for the check
star and � Cas and 20 s for the comparison star and sky
measurements. During the first observing season (1997/
1998), a 4.8 mag neutral-density filter was used for � Cas
and a 1.2 mag filter for everything else. This complicated the
reduction of the observations to differential magnitudes for
the first season and led to a small zero-point offset relative
to subsequent seasons (see below).

Three variable-minus-comparison and two check-minus-
comparison differential magnitudes in each photometric
band were computed for each group observation and then
averaged to create group-mean differential magnitudes. The
group means were corrected for differential extinction with
nightly extinction coefficients, transformed to the Johnson
system with yearly mean transformation coefficients, and
treated as single observations thereafter. The external preci-
sion of the group means, based on standard deviations for
pairs of constant stars, is typically �0.004 mag on good
nights with this telescope. Group-mean differential magni-
tudes with internal standard deviations greater than
0.01 mag were discarded to filter observations taken in non-
photometric conditions. A total of 921 B and 927 V group-
mean differential magnitudes for � Cas were obtained over
the four observing seasons.7 Further details of telescope
operations and data reduction procedures can be found in
Henry (1995a, 1995b).

3. LONG-TERM VARIATIONS

3.1. X-Rays

The representative X-ray intensity at a given epoch is
assumed to be characterized by the mean value of the X-ray

flux evaluated over the 27 hr rotation period of the star. This
mean value was derived for each of the six time sequences in
the present study as well as the two observations taken in
1996 and one taken in 1998. The results are presented in
Table 1, which shows that the X-rays can vary by a factor of
up to 3 in intensity.

A periodogram analysis was carried out on the nine sam-
ple dates, and solutions were found at 70.1 and 84.4 days
(see Fig. 2). In both cases the light curve was nearly sinusoi-
dal. While these plots support the view that the X-ray fluxes
have a long-term periodicity, the number of samples is
insufficient to make a compelling case that the X-ray varia-
tions are strictly periodic. In fact, in x 3.3, we will introduce
optical evidence that these X-ray variations are cyclic with a
still unknownmean timescale.

3.2. Optical

The time histories of the B and V intensities for all four
APT observing seasons are shown in Figure 3, while a sum-
mary of the characteristics of these data is given in Table 2.
In all cases these time histories show a pronounced sinusoi-
dal variation. A periodogram analysis for each observing
season shows a variable period, decreasing from 61 days for
the 1997/1998 season to 54 days in the 1998/1999 season
and then increasing thereafter, reaching 93 days for the
2000/2001 season (see Table 2).

In addition to the cyclic 55–93 day periodicities, there also
appear to be significant changes in the average magnitude
from one observing season to the next. Since the first season
was obtained through different neutral-density filters than

TABLE 1

Summary ofRXTE PCA Observations

Visit

HJD

(�2,450,000)

Date

(2000)

Duration

(hr)

Count Rate

(counts s�1)

Position ofMinimuma

(hr)

1......... 1562 Jan 18 27.16 55 0

2......... 1569 Jan 25 27.17 37 158.0

3......... 1587 Feb 12 27.7 44 589.0

4......... 1621 Mar 17 28.4 96 . . .
5......... 1721 Jun 25 26.7 58 3808.9

6......... 1882 Dec 3‘1 26.4 95 . . .

a Time from theminimummeasured in visit 1.

7 The individual Johnson BV photometric observations are available at
http://schwab.tsuniv.edu/t3/gammacas/gammacas.html and will be even-
tually published in full.

Fig. 2.—Median X-ray count rate for the nine observed times sequences
(asterisks) as a function of cycle phase, assuming (a) a 70.1 day cycle period
and (b) an 84.4 day period. The point at phase 0 has been replotted at phase
1 for reference. A sine wave (dashed line) has been included for reference.
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the following observations, it is not possible to compare the
optical fluxes of those data with later seasons. However,
data for the last three seasons were obtained with identical
instrumental configurations, so these long-term variations
are probably real. Such variations are in fact typical of
early-type classical Be stars (Pavlovski, Harmanec, & Bozic
1997; Moujtahid et al. 2000). Although the reason(s) for the
variation is unknown, it is generally thought to be associ-
ated with an evolution of the disk structure (Hirata 1984).

In Figure 4 we examine the relation between the B and V
fluxes during the four observing seasons. To facilitate the
comparison, we have averaged all observations taken dur-
ing an individual night and converted the fluxes to percent-
age deviation from the average intensity measured during
that observing season. The dashed line in each plot repre-
sents the case in which the change in B equals the change in
V, so there would be no color change associated with the
change in intensity. The solid lines represent a linear least-
squares fit of DB against DV. The slope of this fit is indicated
on the plot. In all four observing seasons the slope is less
than 1, indicating a greater fluctuation in V than in B. This
result is consistent with other observed color variations. For

example, Horaguchi et al. (1994) show a strong positive cor-
relation between the (B�V ) color and the V-band intensity
of � Cas, in which (B�V ) increased by 15% during a 45%
increase in theV- band flux between 1960 and 1989.

To see whether the small slopes presented in Figure 4 are
statistically significant, and not caused by the large uncer-
tainties in the measured values of DB and DV, we repeated
the analysis using 2 and 3 day averages. The results were
nearly identical to those found for the 1 day averages. We
also performed a statistical test in which we calculated the
probability of obtaining the measured slopes from data in
which the slope was actually equal to 1. To do this, we used
a random number generator to create a set of 100 DB and
DV samples with values ranging from �1.5% to 1.5% and
for which DB ¼ DV . A second random number generator
was used to add normally distributed uncertainties to the
data. The distribution of uncertainties was centered on 0
and had a � of 0.3%. A least-squares fit was then performed
on the synthetic data set, and the slope was tabulated.
Repeating the process 20,000 times, we were able to empiri-
cally establish the probability of obtaining any given slope.
The probability distribution was Gaussian in shape and was
centered at a slope of 0.9 with an FWHM of 0.1. The offset
of the centroid slope from the expected value of 1.0 was
caused by the large uncertainties in the values of the inde-
pendent variable (DV ). When these uncertainties were
reduced in the simulation, the center of the probability dis-
tribution shifted to 1.0, as expected. From these simulations
we find that the probability of measuring a slope of less than
0.8 is only 2.5%, while the probability of a slope less that
0.75 is only 0.07%. Thus, while the distribution obtained
during the first season (Fig. 4a) is compatible with
DB ¼ DV , those obtained in other seasons are consistent
with DB < DV .

To estimate the uncertainties in the slopes, we determined
the rms deviation of the measured points from regression
lines having slopes ranging from 0.3 to 1.5 and pivoting
around the point DB ¼ DV ¼ 0. The derived distribution
was a rather flat parabola centered at the slope deduced
from the least-squares fit. The range of acceptable slopes
was taken to be those values where the rms deviation was
less than 1.5 times the minimum rms value. This range is
indicated in Figure 4.

Future work by one of us (G. W. H.) will test these results
further by extending the photometric monitoring into the
near-IR.

3.3. Comparing Optical and X-Ray Variations

The sinusoidal shape and 75 day period found in the opti-
cal data during the 1999/2000 observing season are remark-
ably similar to the 70 day variations found for the X-ray
fluxes (Fig. 2). An obvious question, therefore, is whether
the variations in the two wavelength regimes are correlated.
Unfortunately, it is not possible to compare the two data
sets directly since only five of the nine X-ray time sequences
have simultaneous optical coverage and most of those were
obtained during the end of the optical observing season,
where the uncertainties in the optical magnitudes were
large.

An alternative approach is to determine an empirical
model for the optical variations during the last two observ-
ing seasons and then compare the X-ray fluxes with the pre-
diction of this model. We know from the period analysis

Fig. 3.—Summary of the optical B- andV-band observations for each of
the observing seasons.B andVmagnitudes have been converted to percent-
age deviation from the averagemagnitude derived over the entire data set.
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Fig. 4.—Comparing B- and V-band variations during each of the four APT observing seasons: (a) 1997/1998, (b) 1998/1999, (c) 1999/2000, and (d ) 2000/
2001. Points represent intensities averaged over 1 day intervals and expressed as a percentage deviation from the mean intensity for that observing season. The
solid line is a linear least-squares fit to the data (‘‘ slope ’’ indicates the proportionality factor between DB and DV ), while the dashed line represents the case in
whichDB equalsDV (no color changes).

TABLE 2

Summary of Optical Observations

Photometric Band Nobs

Period

(days) AverageMagnitude

Peak-to-Peak Amplitude

(mag)

Date Range (HJD�2,450,000): 0718–0856

B ............................. 177 60.8 � 1.3 1.991 0.0142 � 0.0012

V ............................. 183 61.7 � 0.3 2.163 0.0156 � 0.0012

Date Range (HJD�2,450,000): 1086–1225

B ............................. 207 52.8 � 0.8 2.078 0.0086 � 0.0012

V ............................. 211 55.0 � 0.9 2.132 0.0089 � 0.0014

Date Range (HJD�2,450,000): 1447–1590

B ............................. 247 72.2 � 1.6 2.093 0.0154 � 0.0012

V ............................. 243 77.1 � 1.8 2.150 0.0174 � 0.0011

Date Range (HJD�2,450,000): 1805–1956

B ............................. 290 93.2 � 3.0 2.094 0.0172 � 0.0010

V ............................. 290 93.6 � 2.8 2.146 0.0200 � 0.0009

Note.—The individual Johnson BV photometric observations are available at
http://schwab.tsuniv.edu/t3/gammacas/gammacas.html.



discussed in x 3.2 that the 1999/2000 season has a period of
roughly 75 days, while the 2000/2001 period was about 93
days. The optical variations were therefore modeled as a
sine wave with a period linearly increasing with time. We
also assumed a phase andmean intensity that varied linearly
with time since the overall flux increased between the two
seasons. Thus, the assumed light curve had the form

mV ¼ C1ðtÞ þD sin C2ðtÞ þ
2�t

C3ðtÞ

� �
;

whereCiðtÞ ¼ Ai þ Bit (i ¼ 1, 2, 3).
Here Ai, Bi, and D are all constants that were manually

adjusted to fit the observations and t is the time (in days)
from a reference date (HJD ¼ 2; 451; 440). To increase the
signal-to-noise ratio during the fitting process, the average
B magnitudes were scaled to match the V magnitudes and
the data were averaged into 3 day bins. The resulting fit is
shown in Figure 5 and is remarkably good considering the
crudeness of the model. The parameters of the fit were

C2ðtÞ ¼ phase ¼ 0:85� 0:0015�t ;

C3ðtÞ ¼ period ¼ 65þ 0:027t days :

Note that the period is 65 days at the start of the 1999/2000
season and increases to about 79 days at the end of the
2000/2001 season. This is somewhat shorter than was
obtained when fitting the individual seasons with a sine
curve. The difference is probably due to the relatively large
change in phase during an observing season.

We next computed a numerical model for the X-ray light
curve by using the values of period and phase that were
found for the optical data and adjusting the average inten-
sity (C1) and the amplitude (D) to fit the observed X-ray
fluxes. The results, shown in Figure 5b, exhibit a remarkably
strong correlation between X-ray and optical fluxes. We
note parenthetically that the year-to-year increase in the

optical data is not reflected in the X-ray fluxes. This is con-
sistent with the fact that such variations are also common-
place in Be stars without strong X-ray emission (Pavlovski
et al. 1997).

4. SHORT-TERM VARIATIONS

4.1. General Properties of the X-Ray Flux

In Figure 6 we show the X-ray variations for each of the
six time sequences taken during the 2000 program. As dis-
cussed by SRC98 and RS00, the X-ray flux is composed
of two components. The first consists of numerous short-
duration bursts, termed shots, with lifetimes of�10 s to sev-
eral minutes. These are superimposed on a background, or
basal emission, that varies on timescales of 30 minutes to
�10 hr. The basal emission can be thought of as the mini-
mum flux at any given time. It was determined by two inde-
pendent techniques (see RS00). Briefly, the first of these
techniques relies on determining the median flux during
time periods (of several minutes duration) when no signifi-
cant shot events occur and then linearly interpolating
between these samples. The second technique attempts to
remove the shot events from the time sequence and then
takes the average residual flux as the basal component. Both
techniques produce similar results, although the second gen-
erally leads to a greater variability since groups of shots
often merge into apparently longer term variations.

Our estimates of the basal fluxes are presented in Figure
6. Comparing the different time sequences shows that the
character and timescale of the variations can change sub-
stantially from one visit to the next. However, some trends
can also be detected within the data. For example, visits 1,
2, 3, and 5 are all taken during relatively low flux epochs,
when the average count rate was 60 counts s�1 or less (see
Table 1 and Fig. 5). In all cases these time sequences show a
wide range of basal fluxes and a rather long timescale for the
variations, similar to the behavior seen during the 1996
March observations (SRC98). In every case there was at
some point a long-duration fluxminimum (marked by a ver-
tical line in Fig. 6), which will be discussed in more detail
below. During visit 2, when the mean flux was low, there
were times when the fluxes dipped to below 15 counts s�1

and the instantaneous X-ray output approached the normal
levels for an early-type Be star. On one occasion the hard-
ness ratio (formed from fluxes summed over 7.6–12 keV to
the integrated 2–4.1 keV flux) also dropped significantly
over several minutes to a new stable value. In contrast, the
time sequences obtained during visits 4 and 6 were obtained
during flux maxima, when the average RXTE fluxes were
nearly 100 counts s�1. The basal fluxes show much less var-
iation for these epochs, and there is no indication of the
broad flux minima.

Variations of the basal flux occur in all of the light curves
and last from about 30 minutes to several hours. Details of
several representative time sequences are shown in Figure 7.
The timescales for these variations are much too small for
them to be caused by rotational modulation, and their pres-
ence emphasizes the extremely dynamic nature of the X-ray
source region. Short-duration events appear to be caused by
dramatic increases in the production rate of individual
shots. The longer term events often contain periods of sev-
eral minutes or longer during which the shots temporarily
disappear. The enhanced flux levels during this time there-

Fig. 5.—Top: 5 day averages of V-band magnitude over the 1999/2000
and 2000/2001 seasons. Error bars represent the rms variation of the data
points. The solid line is an empirical fit to a sine wave with linearly increas-
ing period and phase, as explained in the text.Bottom: MedianRXTE count
rates for the six time sequences obtained in 2000. The solid line is the sine
wave model used in the optical fit, which has been adjusted in amplitude to
fit the X–ray data.
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fore reflect a rapid evolution of the basal source region
itself.

An inspection of the hardness ratios shows to first order
that the hardness typically does not vary, even when the
integrated net fluxes change by large factors. There are

exceptions to this, and there is a statistically significant ten-
dency for the hardness ratios to increase slightly when the
net fluxes increase for several hours. There is also a striking
case during visit 4 in which the hardnesses decreased from
an abnormally high value to normal in 20 minutes. These
results are in accord with our analysis of the 1996 and 1998
data sets (see SRC98, RS00).

4.2. Redetermining the Rotation Period

The broad flux minima seen in visits 1, 2, 3, and 5 are very
similar to a feature seen during the 1996 March observa-
tions (see SRC98). The duration for this feature is about 7 hr
and may therefore be caused by the rotational modulation
of a structure on or near the surface of the star, reminiscent
of a solar coronal hole. The shape of the time series for this
feature appears to be stable for moderately long periods of
time, as shown in Figure 8. In this plot we compare 30
minute averages of the time sequences obtained during visits
1 and 3 and assume a 27 hr rotation period. The light curve
for visit 3 has been shifted so that the fluxminimummatches
the minimum seen during visit 1. Comparisons between
other time sequences that have the feature show a similar
agreement. The stability of the feature suggests that it is
formed in a relatively long lived structure (the feature may
simply be masked by enhanced activity from other longi-
tudes on the star during the two visits where it was not appa-

Fig. 6.—Summary of the sixRXTE time sequences obtained in 2000. Points represent 16 s averages, diamonds are 30minute averages, and the solid line rep-
resents estimates of the basal flux level. A vertical line in visits 1, 2, 3, and 5 shows the location of a flux minimum that was used to search for a rotation period
of the star (see Fig. 8).

Fig. 7.—Detail of the RXTE time series at two representative times that
shows both the short-term transients (shots) and the longer term variations
in the underlying basal emission.
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rent) and can therefore be used as a marker from which a
rotational period could be deduced. Suchmarkers were used
by SRC98, who used the feature in the 1996 March RXTE
data together with ASCA satellite data taken 11 days earlier
to determine a rotation rate of 1.125 days (27 hr). This is
very similar to the period of 1.12277 days derived from UV
variations (RS00).

The relative times at the center of the flux minimum for
each of the relevant time sequences are given in Table 1;
these are referred to as the first sequence in 2000 January.
However, a simple period analysis shows that there is no
unique rotation period that can account for all of these time
intervals. This implies that the feature is either dissipating
and reforming at new longitudes or is drifting in longitude
(�) at a rate that changes with time, so that the longitude at
any given moment is given by

�ðtÞ ¼ �ð0Þ þ Ct� :

If � were equal to 1, so that the drift rate were a constant,
then the markers would still be periodic except that the mea-
sured period would differ from a true rotation period. Using
the measured time intervals from Table 1, we find that a
suitable set of parameters is given by apparent rotation
period at t0 ¼ 25:18 hr,C ¼ 0=241 hr�1, and � ¼ 1:2.

We stress that these figures refer only to this set of X-ray
data and should not necessarily be preferred over those fits
to earlier data since we expect that the values of C and �
would vary with time.

4.3. A Search for Periodic Decreases in the X-Ray Flux

In their analysis of the 54 hr X-ray time sequence
obtained in 1998 November, RS00 discovered the presence
of cyclic decreases (‘‘ lulls ’’) in the X-ray flux that occurred
every �7.5 hr. These decreases were also found in the 1996
March observations. To check for a persistence of the X-ray
lull pattern, we carried out the same analysis on the six data
strings obtained in 2000. Surprisingly, with the possible
exception of time sequence 5, no evidence for lulls with this
period was found in the data, as shown in Figure 9. In Fig-
ure 9a the autocorrelation analysis of the 1998 November

sequence is shown for reference. Light curves obtained dur-
ing low-flux epochs (visits 1–3) showed no indication of
periodic lulls. However, some evidence of cyclicity was seen
during the high-flux visits, but on a much shorter timescale,
i.e., 3.5 hr for visit 4 (Fig. 9b) and 5.8 hr for visit 6 (Fig. 9d).
The general indication is that the lull cycles can develop, last
for several months or more, and then disappear. Lull cycles
from these different ‘‘ episodes ’’ apparently do not have to
take on a special value (like 7 hr), as had been tentatively
concluded in RS00.We are as yet no closer to a fundamental
understanding of this peculiar phenomenon.

4.4. Short-Term Variations in the Optical Flux

Most of the APT observations consisted of only one or
two samples per night. However, on four nights during the
2000/2001 observing season more intensive observations
were carried out, covering 4 hr when the source was near the
zenith. The resulting light curves are shown in Figure 10.
Despite the large scatter, it is apparent that there are real
variations on the 1%–3% level that have timescales of sev-
eral hours (see especially Fig. 10c). X-ray variations can also
occur on these timescales (see, e.g., Fig. 1b). Unfortunately,
none of the extended optical data sets were taken precisely
during anRXTE visit, so the short-term X-ray/optical asso-
ciation cannot be examined in detail.

4.5. H�Variability

During 1928–1934 and from 1969 to the present the H�
profile of � Cas has been dominated by cyclic variations of
the V=R emission ratio (see, e.g., Doazan et al. 1983). These
variations are now widely believed to be due to a dynamical
instability in the disk that excites a one-armed density wave
that precesses around the star on a timescale of 5–7 yr. This
feature has been imaged interferometrically in H� light and
has been shown to rotate around the star on this timescale
(Berio et al. 1999). During the year 2000 the V=R ratio
decreased from a value of about 1.3 to 1.0 (G. J. Peters
2001, private communication). During this time the equiva-
lent width (EW) of the line also decreased by about 3%, con-
tinuing a slow downward trend since its gradual ascent to
maximum in 1994.8

The original impetus of our 2000 RXTE program was to
measure a timescale for X-ray changes in order to determine
whether the epochal X-ray flux levels were related to the
passage of the one-armed circumstellar feature. This might
occur if, for example, the density of the arm affected an
interaction between a putative stellar magnetic field and a
magnetic field entrained or self-generated in the disk. We
can now say (see Fig. 5) that there is no evidence for a year-
to-year trend in the X-ray flux that could be ascribed to a
disk arm precession cycle.

The discovery of the cyclic variability in the optical con-
tinuum leads to the question of whether this cycle is also
present in the H� data. To help us address this question,
K. Bjorkman and A. Miroshnichenko kindly put at our dis-
posal a series of 88 H� line profile observations obtained at
the Ritter Observatory during an 18 month period from late
1999 to early 2001. Measurement of these data shows that
there are no apparent cyclic variations in the H� EWs on

8 See the article by E. Pollman in the Be Star Newsletter, Volume 35,
available at http://www.limber.org/benews/volume35/pollmann/take6/
pol0.html.

Fig. 8.—Comparing the 30 minute average X-ray fluxes obtained during
visit 1 (diamonds) with average fluxes obtained during visit 3 (asterisks).
The points are plotted as a function of rotation phase assuming a 27 hr
period. The fluxes from visit 3 have been shifted in phase to align the flux
minimum feature seen at phase 0.1.
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any timescale, including one near 70 days. The same holds
for the shape of the normalized profile, which shows only a
steady, long-term decrease in the amplitude of the violet
peak. However, we note that EWs are defined with reference
to the continuum flux. Therefore, the H� fluxes should
actually have a variation that is similar to that of the optical
continuum, provided cyclic EW variations were not lost in
the noise. To test whether 3% EW variations were actually
detectable in these data, we added synthetic sine curves with
a 3% amplitude and then analyzed themwith a periodogram
tool, PDM, in IRAF. The calculation was then repeated
with the sine curve starting at different phases. For each of
these trials, we were able to detect the input signal at about
the same, 2 �, level. This implies that an absence of a modu-
lation in the H� fluxes, seen as a reflex in the EW data, can
be verified. This is a nontrivial point. Since the disk is cer-
tainly optically thick in H� and thin in the continuum, the
two could conceivably show different responses.

5. DISCUSSION

5.1. Examining the Binary Accretion Hypothesis

As mentioned in x 1, it is commonly suggested that the
X-rays from � Cas originate from mass infall onto a degen-
erate companion. For years this hypothesis could not be
directly tested because no evidence for a companion existed.
However, recently Harmanec et al. (2000) have reported, on
the basis of periodic velocity variations in the H� and He i

lines, that � Cas is likely to be a binary. Their solution for
the velocity curve shows that it is in a moderately eccentric
orbit with a period of 203.59 days and that its companion
has a mass �0.5–2 M�. The component stars in such a sys-
tem would be separated by about 0.8 AU.

Standard Bondi-Hoyle accretion theory (Bondi & Hoyle
1944) suggests that the X-ray luminosity from an accreting
degenerate companion will vary as �V�3

rel , where � is the
local density and Vrel is the relative velocity between the star
and the accreting gas. Since these properties vary with orbi-
tal phase, comparing the observed RXTE X-ray flux with
expected variations based on the orbital ephemeris provides
a clear test of the degenerate companion model. This com-
parison is done in Figure 11. Here the expected X-ray flux
was calculated using the formalism for wind accretion onto
a degenerate star described by Waters et al. (1989), in con-
junction with the Harmanec et al. (2000) orbital ephemeris
with e ¼ 0:26. In this calculation it is assumed that the den-
sity varies as r�2 and that the wind has reached its terminal
velocity (�1800 km s�1), so thatVrel does not vary with orbi-
tal phase. Even stronger phase variations are expected if the
companion is embedded in the stellar Keplerian disk since
the density there varies as r�n, with n ¼ 3:3 4:5 (Waters et
al. 1991). In clear contrast to the results presented in Figure
2, Figure 11 shows that the 1996–2000 RXTE observations
have a random scatter when folded over the Harmanec et al.
(2000) binary period. We believe that this result argues
strongly against the idea that the X-rays originate from the
companion.

Fig. 9.—Autocorrelation functions for the reciprocal X-ray flux obtained from various time sequences: (a) 1998 November, (b) visit 4 (2000 March 17), (c)
visit 5 (2000 June 25), and (d ) visit 6 (2000 December 3). The solid line is a calculation obtained from the basal flux measurements, while the dashed line is the
same calculation using 30 minute average fluxes (which include the effects of shots). Vertical lines indicate equally spaced peaks in the correlation that point to
periodic behavior. The indicated periods are (a) 7.5 hr, (b) 3.5 hr, (c)�7 hr, and (d ) 5.8 hr.
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Recently, A. Mironishenko & K. Bjorkman (2002, pri-
vate communication) have used new data to confirm the
Harmanec et al. (2000) orbital period but suggest that the
ellipticity may be small. If this turns out to be the case, then

the X-ray variations predicted in Figure 11 would disap-
pear. In this scenario, variable X-ray emission from a com-
panion would require changes in the wind mass-loss rate or
velocity. While this is conceivable, it is unclear how or where
these wind changes would originate. If the companion were
embedded in the disk, then the orbit is likely to have at least
a small inclination to the plane of the disk (see, e.g., Waters
et al. 1989). Since Be disks are thin, the star would then be
subject to substantial phase-related density and relative
velocity variations, with consequent phase-related X-ray
production, even for a circular orbit.

The current study provides two additional pieces of evi-
dence against the companion as the source of the X-rays.
The first involves the simple fact that the periods of both the
optical and X-ray variations change with time, contrary to
the behavior expected from a stellar companion. The second
concerns the strong correlation between the X-ray and opti-
cal changes (x 3.3). Even if we assumed that the Harmanec
et al. (2000) analysis was erroneous and that the star had a
companion with a 70 day period, an X-ray source at that
distance would be unable to substantially affect the Be star’s
optical flux through irradiation. In fact, known high-mass
X-ray binary systems with periods near 70 days and X-ray
fluxes that are 2–4 orders of magnitude larger than those
seen in � Cas are not associated with any correlated optical

Fig. 10.—Short-term optical variations obtained during the 2000/2001 observing season. Fluxes are represented as the percentage change from the mean
magnitude seen during that observing season. Triangles representV-band observations, while asterisks mark B-band data. Observing dates are (a) 2000 Octo-
ber 14, (b) 2000 October 17, (c) 2000 November 14, and (d ) 2000 November 18.

Fig. 11.—MeanRXTE fluxes folded to the Harmanec et al. (2000) period
of 203.59 days. Their ephemerides are applied to Bondi-Hoyle accretion
theory (with scaling factor adjusted to mean of observed fluxes) to produce
the dashed curve, which clearly does not fit the data.
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variations (Liu, van Paradijs, & van den Heuvel 2000). The
idea that the optical variations are caused by reprocessing
of the X-ray photons is also contradicted by energy consid-
erations, as shown in x 5.2.

Another possibility is that the X-ray flux variations from
a mass-accreting degenerate companion are driven by den-
sity changes associated with the optical variability (e.g.,
changes in the inner disk structure; see x 5.2). In this case,
the changing periods and close correlation of fluxes could
conceivably be explained provided that the companion was
embedded within the disk and that the disturbance propa-
gates rapidly from the site of the optical emission near the
Be star to the companion. Disturbances can propagate rap-
idly (at the Alfvén velocity) but only along the magnetic
field direction, which is primarily azimuthal within the disk
(see x 5.3). Radially directed disturbances will propagate
near the local sound speed, cs. For example, in the dynamo
discussed in x 5.3 the relevant velocity is �cs (E. Vishniac
2002, private communication), where � is the effective vis-
cosity and is probably less than 1 for Be stars (Okazaki
2001). Assuming a mean disk temperature of T ¼ 104 K,
one finds cs � 13 km s�1. Thus, for a system with a separa-
tion of 0.8 AU, there would be a phase lag of about 100 days
between the optical and X-ray light curves.

5.2. The Site of Optical Variations

The strong correlation between the X-ray and optical var-
iations suggests a common origin. It is tempting to postulate
that the optical variations arise from the reprocessing of the
X-ray photons as they impinge the stellar photosphere.
However, simple energetic considerations show that this is
not tenable. The bolometric luminosity of � Cas is about
1038 ergs s�1 (see, e.g., Harmanec 2000), and the epochal
average X-ray flux according to our RXTE data is in the
range ð0:4 1:1Þ � 1033 ergs s�1. Thus, a 3% variation of the
bolometric flux corresponds to an energy input of more than
103 times the observed X-ray energy. Using a Kurucz theo-
retical LTE spectrum of a star with an effective temperature
of 27,000 K and log g ¼ 4, we find that the flux contained in
the B band and longer wavelengths equals �4.3% of the
bolometric flux. Thus, even if the 3% optical variations are
restricted to the B and V bands, they still involve energies
that are 100 times those observed in the X-rays.

If the optical variations are not produced directly by the
X-rays, then it is likely that the two are driven by the same
engine. One possibility is that the optical variations come
from the surface of � Cas. In SRC98 we proposed a model
in which the X-rays were produced by electron beams
directed toward the star. These beams impulsively heat the
stellar photosphere (at densities of 1013–1014 cm�3) to tem-
peratures near 108 K and produce the shots. The heated
material expands rapidly into the overlying magnetic can-
opy, where it radiates slowly and is responsible for the basal
flux (see RS00 for more details). In previous studies we have
assumed that all of the beam energy goes into the X-ray–
emitting plasma. However, it is possible that a significant
amount may also heat the stellar photosphere to more mod-
erate temperatures. In addition, the physical processes that
result in the electron beams (see, e.g., Smith & Robinson
1999) may also produce high-energy protons, conduction
fronts, and/or Alfvén waves (see, e.g., Ulmschneider, Priest,
& Rosner 1991), all of which could heat the stellar atmo-
sphere and account for the optical variations.

One problem with this general scenario is that a heating
of the stellar atmosphere necessarily results in a decrease in
the (B�V ) color of the star. This is contrary to the observa-
tions presented in x 3.2, which show an increase in (B�V )
with increasing luminosity during the�70 day cycle. A heat-
ing also implies that the optical variations should be corre-
lated with greater variations in the ultraviolet. To check
this, we have compared the UV continuum fluxes extracted
from 14 available high-dispersion large-aperture, LWP
camera observations from the IUE data archive at MAST.9

These fluxes show no credible periodic variations in the
near-UV to �2%. A similar exercise for 164 large-aperture
SWP camera observations shows no reliable variations of
the rotation-averaged far-UV intensity with amplitude
greater than about 0.5%. Thus, it appears unlikely that the
optical flux modulations originate from the stellar surface.

An alternative possibility is that the optical variations
arise within the circumstellar disk. This is a commonly
invoked explanation for other long-term optical variations
seen in Be stars (see, e.g., Hirata 1984). For example, Hora-
guchi et al. (1994) document a tight correlation between
enhanced V-band flux and increased (B�V ) color of � Cas
during the disk-building phase that occurred between 1960
and 1990. The relationship between B and V reported by
Horaguchi et al. is also similar to the results presented in
x 3.2, i.e., DB=DV ¼ 0:76� 0:08 (Fig. 4). To understand this
behavior, we note that the disk, which has a density-aver-
aged temperature of about 10,000 K (Millar, Sigut, &Marl-
borough 2000), exhibits a progressively increasing
contribution to the observed flux with increasing wave-
length. It contributes some 0.05% at 1900 Å (Ph. Stee 2001,
private communication), a few percent near 4800 Å, about
20% near 6500 Å (Stee & Bittar 2001; Horaguchi et al.
1994), and virtually 100% above 2 lm (Waters et al. 2000).
Thus, variations in the disk brightness would naturally
explain both the increase in (B�V ) color with increasing
optical flux and the lack of substantial UV variations. How-
ever, it should be pointed out that the observed flux varia-
tions are probably not simply the result of mechanical
heating through, for example, resistive dissipation of disk
turbulence. Assuming a Keplerian disk of mass �10�9 M�
(Waters et al. 2000), one finds that the total orbital kinetic
energy of the disk is only�1038 ergs. Thus, the disk does not
appear to have enough reserved energy to allow it to power
changes in radiative flux, amounting to 1035–1036 ergs s�1,
for more than several minutes. Instead, we assert that the
observed energy most likely comes from the stellar radiation
field, with the physical processes in the disk simply modulat-
ing the amount of energy that is absorbed and released by
changing the optical thickness of the disk. This idea will be
discussed in more detail in x 5.3.

In our picture the X-ray emission from � Cas comes from
energy stored within unstable magnetic fields. Long-term
changes in the X-ray emission should therefore reflect long-
term changes in the magnetic fields. This suggests in turn
that the X-ray emission is being driven by a magnetic
dynamo. The close agreement between the X-ray and opti-
cal variations implies that this dynamo is also the control-
ling mechanism for the optical variations. The physical

9 MultiMission Archive at Space Telescope Science Institute, in contract
to NASA.
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processes explaining how this might happen are discussed in
the following section.

5.3. APossible Dynamo

Smith & Robinson (1999) suggested that many of the
observed X-ray and UV characteristics of � Cas could be
explained by the dynamical interactions between putative
magnetic fields on the star and its disk. While the short-term
variations in the basal flux and burst rate (x 4.1) can be
attributed to an inhomogeneous magnetic structure, the
long-term variations (x 3) are most likely caused by cyclic
changes in the magnetic field strength and/or area coverage
on the star or within the disk. We believe that this implies
the presence of a magnetic dynamo, as mentioned above,
and can think of no other explanation that fits our observa-
tions. The site of this dynamo is uncertain. It may occur on
the Be star itself. Such a dynamo would be completely differ-
ent from that operating on late-type stars such as the Sun
since a conventional �-� dynamo requires convective
motions, which are not present on � Cas. It is possible that
Coriolis forces on this rapidly rotating star may substitute
for the convection, as suggested by Airapetian (2000). How-
ever, the fact remains that � Cas is currently the only known
Be star that shows these types of X-ray and optical varia-
tions, and there is nothing particularly unusual about the
star itself other than its not atypical Be character.

The alternative is that the dynamo operates in the circum-
stellar disk, which is among the densest of all known Be
stars (Poeckert & Marlborough 1978; Lamers & Waters
1987; Telting 2000). As described in Balbus & Hawley
(1998), a disk dynamo is substantially different from a classi-
cal stellar dynamo. In a star, the convective turbulence that
is responsible for amplification of an existing seed field (the
so-called dynamo �-effect, not to be confused with the Sha-
kura-Sunyaev viscosity �, both used in disk accretion stud-
ies) is a global stellar property. These motions contain much
more energy than the magnetic fields and are therefore unaf-
fected by the growth in the field strength. In a disk, however,
the turbulence is produced by the interaction of a seed field
(presumably coming from the star) and the Keplerian shear
within the disk through the magnetorotational instability of
Balbus & Hawley (1991), which is expected to operate to
some extent whenever a magnetic field is embedded in a
Keplerian disk (Balbus & Hawley 1998). The result is an
interacting system in which turbulence amplifies the mag-
netic field, which, in turn, increases the level of turbulence.
Numerical simulations have shown that such a mechanism
can produce a self-sustaining dynamo in either cyclic or cha-
otic forms. The form of the dynamo depends on such physi-
cal characteristics as the strength and configuration of the
background magnetic field, the density structure of the disk,
and the conditions at the edge of the disk (see, e.g., Torkels-
son & Brandenburg 1994; Brandenburg et al. 1995; Hawley,
Gammie, & Balbus 1996). Of particular interest to our study
are numerical simulations of Brandenburg et al. (1996),
which predict a cyclic dynamo with a period of �30 times
the Keplerian rotation period. If this simulation is applica-
ble to � Cas, then the observed 70 day cycle implies that the
dynamo is operating in the inner disk, at a radius of about
2.5 R* (assumingM� ¼ 17M� and R� ¼ 7 R�). This is just
slightly outside the Keplerian corotation radius, RK ¼ 1:7
R*, and is near the location where the disk density seems to
be highest (Berio et al. 1999).

We suggest that the observed optical variations in � Cas
are caused by the turbulence generated by the disk dynamo
and the effect of that turbulence on the density structure of
the disk. To understand this process, we note that the pri-
mary source of energy within the disk, including that which
powers the optical emissions, is the radiation field of the
star. Since the disk is optically thin in the continuum (see,
e.g., Stee & Bittar 2001), the amount of radiation that is
absorbed and reemitted is dependent on the local emission
measure,

R
n2e dV . Thus, changes in the density will be

reflected as variations in disk brightness. Since the disk is
moderately stable over a timescale of years, we stipulate that
in the absence of a dynamo there exists a dynamic equili-
brium involving the wind, magnetic fields, turbulence, vis-
cosity, etc., that will determine the density structure. As
discussed extensively by Balbus & Hawley (1998), the intro-
duction of magnetic turbulence into the disk will result in
the outward transfer of angular momentum. This causes a
net inward drift of material and a consequent increase in the
density of the inner disk, which then increases in brightness.
As the magnetic fields decrease later in the dynamo cycle,
the turbulence will also decrease, so the disk will evolve back
to its original density and brightness.

The energy source for dynamos operating in stellar accre-
tion disks is ultimately the gravitational energy of the
accreted material. In contrast, we propose that the dynamo
within the decretion disk around � Cas operates just above
the Keplerian corotation radius RK and is supplied with
energy by magnetic fields that connect the disk to the stellar
surface. To see why this is necessary, consider that material
inside RK must rotate faster than the stellar surface in order
to maintain its distance from the star. In the absence of other
processes, we expect that magnetic fields tied to the stellar
surface will produce a drag on this material and cause it to
spiral onto the star, resulting in an inner edge to the disk
that is at or near RK. Above RK, these same fields will
impart energy and angular momentum to the gas from the
star’s rotational reservoir. This action prevents the matter
within this region from being lost during the maximum of
the dynamo cycle. In this context we note that Berio et al.
(1999) find evidence for a density maximum at a radius of
about 2.5 R*. Further, Smith & Robinson (1999) report on
drifting spectral features near the Si iv resonance lines that
can be interpreted as corotating clouds near 2.5 R*. This
provides evidence for the existence of surface-connected
magnetic fields at these heights. More evidence comes from
Waters et al. (2000), who found that the hydrogen Pfund,
Humphreys, Hansen-Strong, lower level 8 and lower level 9
emission-line series in the infrared spectrum of � Cas all
increase in width with decreasing line strength, as expected
in a disk where the rotational velocity decreases with height.
The maximum width of the lines in these series is in the
range 500–650 km s�1. From the stellar parameters we have
adopted, and assuming an inclination of 46� of the rota-
tional axis to our line of sight (Quirrenbach et al. 1997), we
estimate that the v sin i of a Keplerian disk at the surface of
the star is only�480 km s�1. Thus, even acknowledging pos-
sible errors in our assumed parameters, the large line widths
suggest that the inner part of the disk is being forced to
corotate with the stellar surface, presumably through the
action of interconnecting magnetic fields. If this is true, then
adopting a v sin i of 230–310 km s�1 for the star (see, e.g.,
Slettebak 1982) implies that the forced corotation extends
to a height of about 1.6–2.8R*, i.e., near or just aboveRK.
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6. CONCLUSIONS

In this paper we have described the results of monitoring
� Cas at both optical andX-ray wavelengths. The graduated
spacings in the RXTE PCA observations have succeeded in
defining a timescale for long-term X-ray variations whose
existence was merely indicated from previous random
shorter term monitorings. The sequence of rotation-
averaged X-ray fluxes conflicts with both the period and
amplitude of the modulation expected from conventional
Bondi-Hoyle accretion onto the newly discovered binary
companion. Since this is the same theory used to predict the
X-ray flux level from � Cas in binary models (see, e.g., Kubo
et al. 1998), this disagreement poses manifest problems for
the binary accretion hypothesis.

The individual X-ray light curves also show ‘‘ features ’’
that indicate the presence of evolving active centers. Com-
parison of light curves shows that these structures evolve in
time and probably migrate across the stellar surface. Thus,
using the X-ray signatures as markers is not a reliable
method for determining the star’s true rotation period. It is
unclear whether this conclusion affects our earlier determi-
nation of the period, mainly fromUVmarkers.

Probably the most surprising result of the study was the
discovery of cyclic variations in both the X-rays and optical
fluxes. A study of these variations shows that

1. the X-rays and optical fluxes appear to have a strong
positive correlation,
2. the cycle length changes with time, with observed val-

ues ranging from 55 to 93 days, and
3. the amplitude of the optical variations is greater in the

V than the B band.

In previous papers of this series we have suggested that
the X-rays from � Cas arise from plasma heated by mag-
netic instabilities and stresses. The results of the current
work indirectly confirm this hypothesis by providing evi-
dence against the binary star hypothesis, which appears to
be the only other viable alternative capable of explaining
observed X-ray fluxes and temperatures.

The short timescales of X-ray flares (often as short as a
few seconds; SRC98) imply that this emission is formed in a
relatively high density region, probably the upper photo-
sphere. The location of the basal X-ray component is some-
what more uncertain, although there are indications that it
is also produced near the star. However, the properties of
the optical variability, particularly the increase in (B�V )
color with increasing flux and the lack of correlated changes
in the UV flux, suggest that these are generated within the
Be disk and not from a change in photospheric flux. The
optical fluctuations contain far too much energy to be
caused by the reprocessing of X-rays. In view of this fact we
suggest that the correlated X-ray and optical variations
both are driven by a cyclical process, which we conjecture is
due to a magnetic dynamo and probably operates within the
disk. Such a dynamo would provide a time-modulated mean
magnetic field in the disk that drives X-ray activity and is
also associated with the production of magnetic turbulence
through the Balbus-Hawley instability. This turbulence
influences the transport of angular momentum within the
disk and will influence the density structure, and therefore
the brightness, of the disk. Thus, the control of the X-ray
and optical variations arises from two separate but related
properties of the dynamo. The study of disk dynamos is still

in its infancy. Most studies to date have been specific to
accretion disks rather than the decretion disk of Be stars
such as � Cas. However, at least some ab initio calculations,
while specific to special conditions, do show that cyclic disk
dynamos are possible and can vary on a timescale compara-
ble to that reported here. Thus, the idea of a disk dynamo
on � Cas should be pursued.

At this point it is worthwhile summarizing the ‘‘ big pic-
ture ’’ emerging from the series of papers starting with
SRC98 concerning the production of anomalous X-rays in
� Cas. In this picture a highly complex magnetic topology
exists on the surface of the star. These fields evolve rapidly
and may also migrate across the stellar surface. During
times of low X-ray flux the fields appear to be concentrated
into two or three complexes. However, when the X-rays are
near maximum the fields are more evenly spread across the
disk, and the X-ray flux shows a smaller rotational modula-
tion. A key assumption in our picture is that the star’s mag-
netic field becomes entrained in the inner part of the
ionized, circumstellar disk. This interaction has two conse-
quences. First, the stellar magnetic field causes the produc-
tion of turbulence within the disk through the Balbus-
Hawley instability. This turbulence amplifies andmodulates
the stellar ‘‘ seed ’’ field through a disk dynamo. The turbu-
lence also affects the density structure of the inner disk,
causing the disk brightness to change. Second, the difference
in angular rates of rotation between the star and disk results
in the stressing and shearing of the magnetic lines of force.
This causes the ejection of high-velocity plasmoids (similar
to solar ‘‘ coronal mass ejections ’’; Smith & Robinson 1999)
as well as the generation of high-energy particle beams,
some of which are directed toward particular regions on the
star. The impact of these beams on the surface results in
explosive heating of the ambient plasma to a temperature
near 108 K, resulting in the X-ray shots. The rapid expan-
sion and entrapment of this plasma along overlying mag-
netic field lines result in the longer lived basal X-ray
emission, which usually accounts for most of the X-ray flux
we observe. Clouds of translucent material also form in
these same magnetic complexes and are responsible for peri-
odic absorptions in the ultraviolet continuum flux. The ion-
ization state of particles in various parcels of the star’s
radiative wind is also modulated as they ‘‘ see ’’ these X-ray–
generating centers (Cranmer et al. 2000). Altogether, the
disk serves as a conduit in which the star’s rotational energy
is converted to a time-dependent magnetic field and turbu-
lence. The field is dissipated, in part, by the ejection of plas-
moids and particle beams. Note that the optical variations
are initiated by the motions set up by the dynamo but are
not strictly powered by it.

What are the implications of this picture for this and
other stars observed over a period of time? We do not really
know whether the production of X-rays through this com-
plicated mechanism scales with the development of the disk
or is initiated above some threshold. However, we can spec-
ulate that the X-rays of � Cas were not present circa 1937
when the disk was very weak or nonexistent. At the time the
X-rays were first discovered in late 1975 (Jernigan 1976;
Mason, White, & Sanford 1976), the current disk phase of
� Cas was already well underway and similar to its present
state of development (Horaguchi et al. 1994). Ultimately,
and on an unknown timescale, the current disk will dissi-
pate, and so from our picture one anticipates that the X-ray
emission will fade as well. Because the engine we outline is
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complicated and because some X-ray properties of � Cas
itself are unpredictably (so far) time-dependent, it is unlikely
that a � Cas analog would show identical characteristics to
� Cas itself during the times we have observed it. For exam-
ple, we would bemildly surprised if an analog should exhibit
a 70 day modulation, and its X-ray light curve may or may
not exhibit a clear rotational modulation at any given time.
However, the production of hard X-rays and shots is
expected to be a distinguishing characteristic. In this con-
text, we suggest that the X-ray–variable source HD 110432
(B0.5 IIIe) might be a suitable candidate for observation.
Reporting on BeppoSAX MECS observations, Torrejon &
Orr (2001) have found that this source shows variable
X-rays on timescales of 4 hr and (perhaps) a few minutes or
less, an LX ¼ 7� 1032 ergs s�1 (2–10 keV), and, impor-
tantly, a hard X-ray spectrum consistent with a temperature
of 10.55 keV. From its strong He i �4471 emission and
energy distribution in the UV and optical, it is also clear that
the star has a strongly developed disk compared to most
other Be stars (Zorec, Ballereau, & Chauville 2000; Moujta-
hid & Zorec 2000). Moreover, it appears in the same region
of the H-R diagram as � Cas, is a rapid rotator (Codina et

al. 1984), and may exhibit variability on a rotation timescale
in the optical region (Barrera, Mennickent, & Vogt 1991).
In these ways the two stars appear to be nearly twins. A con-
firmation of even one more star that shows X-ray character-
istics similar to the so far unique case of � Cas would be
critical to establishing the range of stellar and disk charac-
teristics responsible for this rare X-ray phenomenology and
to testing the plausibility of competing models.
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