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Abstract. Earth is the only planet known to harbor life, therefore we may speculate on how the
nature of the Sun-Earth interaction is relevant to life on Earth, and how the behavior of other
stars may influence the development of life on their planetary systems. We study the long-term
variability of a sample of five solar analog stars using composite chromospheric activity records
up to 50 years in length and synoptic visible-band photometry about 20 years long. This sample
covers a large range of stellar ages which we use to represent the evolution in activity for solar
mass stars. We find that young, fast rotators have an amplitude of variability many times that
of the solar cycle, while old, slow rotators have very little variability. We discuss the possible
impacts of this variability on young Earth and exoplanet climates.
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1. Introduction
The cyclic variability of the solar sunspot count was noted by Schwabe (1844), but

observations of surface activity in Sun-like stars came more than a century later. Wilson
(1968) introduced the Mount Wilson Observatory (MWO) HK Project, which began
synoptic monitoring of the emission in the cores of Fraunhofer H (3968.47 Å) and K
(3933.66 Å) K lines for a sample of Sun-like (F, G, and K-type) stars. Formed by singly-
ionized calcium, these lines have a reversal feature for which the central emission has
long been known to correlate with regions of strong magnetic field on the Sun (Leighton
1959; Linsky and Avrett 1970). Using Ca ii H & K as a proxy for magnetic activity on
stars, Wilson (1978) presented observations of 91 main-sequence stars, showing that they
do in fact vary, and that several of the stars appeared to have completed a cycle in HK
flux variations. Baliunas et al. (1995) summarized ∼25 years of synoptic observations
for 112 stars and conclusively showed the existence of cyclic variability, as well as other
patterns of variability. More than half the sample showed either erratic variability, long-
term trends, or flat activity that may be analogous to the solar Maunder Minimum, a
long period of subdued solar activity from about 1650–1700 (Eddy 1976).

Wilson (1968) discussed the difficulty of detecting variability in broad-band visible ob-
servations, estimating a 0.001 magnitude (1 millimagnitude (mmag); ≈0.1%) change in
solar luminosity due to the passage of spots covering about 1400 millionths of the solar
surface. This is comparable to the later measurements of the average cyclic variation in
the total solar irradiance (TSI) from the Solar Maximum Mission (Willson and Hudson
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1991). The challenge of measuring visible-band variability in Sun like (FGK-type) stars
was taken up by researchers at Lowell Observatory, who used differential photometry of
the Strömgren b and y bands to achieve the required precision (Lockwood et al. 1997).
They found short-term (inter-year) and long-term (year-to-year) rms amplitudes rang-
ing from 0.002 mag (0.2%) to 0.07 mag (7%) for about 41 program stars. Overlap with
MWO targets allowed the comparison of photometric variability in the combined band-
pass ((b + y)/2) to Ca ii H & K activity expressed with the R′

HK index, the ratio of
HK flux to the bolometric luminosity. Lockwood et al. (1997) generally found that ac-
tive stars (high R′

HK) have larger rms photometric variability, and Radick et al. (1998)
found a power law relationship between the two quantities. Furthermore, Radick et al.
(1998) found that stars were either faculae-dominated, with a positive correlation be-
tween brightness and H & K activity, or spot-dominated, with a negative correlation. The
terminology here refers to the dominant features contributing to visible-band brightness
variations. The faculae are the photospheric counterpart to the plage in the chromo-
sphere, which are bright features in Ca ii H & K, while spots are dark features in both
H & K emission and visible bandpasses.

Stars like the Sun emit most of their flux in the visible spectrum, and for a planet
with an atmosphere like the Earth’s, the majority of the radiant energy reaching the
surface likewise comes in the visible. The ∼0.1% variability in TSI from the present day
Sun is thought to be of little consequence to the globally averaged Earth temperature
(Stocker et al. 2013), however this may not have always been the case. The climate impact
of the Maunder Minimum period, and its coincidence with the Medieval Little Ice Age
are actively debated, however interpretations are crucially dependent on the use of proxy
records to extrapolate the present TSI into the Maunder Minimum period (e.g. Kopp
2014; Solanki et al. 2013). The stellar studies of Radick et al. (1998) and Lockwood et al.
(2007) show a clear relationship between visible band variability and Ca ii H & K activity,
and furthermore it has long been known that stellar activity decreases with age as a star
loses angular momentum (Skumanich 1972; Noyes et al. 1984; Barnes 2007). We therefore
ask the question, “how has solar variability impacted Earth’s climate on stellar evolution
(billion year) timescales?”, and the related question, “how might stellar variability affect
exoplanet climates?”

Clearly the most important impact of stellar evolution on planetary climate is the total
flux reaching the top of the atmosphere. According to standard solar evolution models,
the luminosity of the Sun has been steadily increasing from an initial value of ∼70%
the present-day luminosity when hydrogen burning began ∼4.6 billion years ago (e.g.
Gough 1981). Because of the lower luminosity, from first-order calculations we would
expect the mean temperature of the Earth to be below the freezing point of water, which
is in contradiction to geological evidence for wet conditions and the development of life
on Earth 3–4 billion years ago (Sagan and Mullen 1972). This problem is known as the
“Faint Young Sun Paradox,” which was discussed by Dr. Martens at this symposium. In
this contribution, we shall ignore the mean luminosity and consider the climate impact
of decadal scale variability from younger, more active stars.

2. Long-term Variability of Solar Analogs
To begin to address the questions of the relationship between stellar variability and

planetary climate, we look at a sample of five solar-analog stars that may represent the
behavior of the Sun at various points in the history of the solar system, as shown in
Table 1. This sample is drawn from a larger sample of 26 solar-analog stars with Ca ii

H & K observational records up to 50 years in length. These long records are obtained
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Table 1. Stellar Properties & Variability

Quantity HD 20630 HD 30495 HD 76151 HD 146233 Sun HD 9562

MV 5.04 4.87 4.81 4.79 4.82 3.41
T/T N

� 0.99 1.00 0.98 1.00 1 1.01
R/RN

� 0.93 0.97 1.05 1.02 1 1.85
L/LN

� 0.83 0.95 1.03 1.03 1 3.62
[Fe/H] 0.00 −0.08 −0.04 −0.02 0 +0.13
Prot [d] 9.2 11.36 15.0 22.7 26.09 29.0
Age [Gyr] 0.5 ± 0.1 1.0 ± 0.1 1.4 ± 0.2 3.66+0 .44

−0 .50 4.57 3.4+1 .7
−0 .2

̂S 0.3606 0.3020 0.2363 0.1703 0.1686 0.1369
AS,98% 0.1169 0.0708 0.0679 0.0414 0.0275 0.0226
AS,s 0.0902 0.0502 0.0576 0.0313 0.0203 0.0159
Aby ,s [mmag] 30.1 21.5 7.9 1.3 1.5� 1.8

Notes: Stellar MV , Teff , and [Fe/H] are from the Geneva-Copenhagen survey (Holmberg et al.
2009). Stellar luminosities are derived using the empirical bolometric correction of (Flower 1996),
and radii follow from the Stephan-Boltzmann Law. T , R, and L are given in solar units using
the IAU 2015 resolution B2 nominal values (Prša et al. 2016) and have an uncertainty of 1–
2%. Rotation periods are from (in order) Gaidos et al. (2000), Egeland et al. (2015) (E15),
Donahue et al. (1997), Petit et al. (2008), Donahue et al. (1996), Baliunas et al. (1996). Ages are
from (in order) Barnes (2007) (B07), E15, B07, Li et al. (2012), Bouvier (2008), Holmberg et al.
(2009). The solar (b+y)/2 amplitude is estimated in Lockwood et al. (2007) by applying a scaling
factor to the TSI record.

by combining observations from the MWO HK Project (1966–2003) and the Lowell Ob-
servatory SSS (1994–present). Some initial results from this study were presented in
Egeland et al. (2016) and Egeland et al. (2016). A similarly long Sun-as-a-star Ca ii H &
K record was developed in Egeland et al. (2017), which accurately placed the long NSO
Sacramento Peak Ca ii K-line record on the S-index scale using coincident observations
of the Moon from the MWO HKP-2 instrument. Figure 1 shows the solar S-index record
and three other stars from our sample on the same scale, illustrating the range of mean
activity levels and amplitudes. The youngest, most active star in our sample is HD 20630
(κ1 Ceti), which was discussed at this symposium by Dr. Dias do Nascimento, Jr. Not
shown are HD 30495 and HD 146233 (18 Sco), the former which is studied in detail in
Egeland et al. (2015), and the latter which is a solar twin (Porto de Mello and da Silva
1997; Meléndez et al. 2014) and has a mean activity and amplitude very similar to the
Sun (Hall et al. 2007; Egeland et al. 2017).

Table 1 shows the properties of the sample. All the stars are within 2% of the solar
effective temperature. All but HD 9562 lie very near to the 1 M� evolutionary track, and
therefore approximate the Sun at different points in its lifetime from an age of 0.5 Gyr
to the present Sun. HD 9562 is a subgiant which has cooled into the temperature range
of our “solar analog” definition, and is more massive than the Sun and the other stars in
the sample. Using log g = 3.99± 0.01 from Lee et al. (2011) and the radius from Table 1
we obtain M/MN

� = 1.24±0.05. Its slow rotation and increased radius are representative
of a future Sun, however the Sun is expected to have a lower surface temperature when
it similarly expands (see Bressan et al. 2012).

We have computed two estimates of the amplitude of variability in the S-index records
of this sample. The first is the inter-98% range, AS,98% , taken as the difference between
the top and bottom 1% of the ∼50 year time series. The thin bars in Figure 1 demonstrate
this estimate of amplitude. We also computed full range of the timeseries of seasonal
median activity, AS,s . Both of these measures of amplitude increase monotonically with

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1743921317004173
Downloaded from https://www.cambridge.org/core. Access paid by the UC Berkeley Library, on 25 Oct 2017 at 21:51:09, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1743921317004173
https://www.cambridge.org/core


332 R. Egeland et al.

Figure 1. Calibrated composite MWO (red) + SSS (blue) time series for the Sun and three solar
analogs. The relative offsets of each time series are real. Data from the Sun are those described
in Egeland et al. (2017). The black bar symbol on the right of each time series indicates four
quantities: (1) the middle diamond is at the median S for the complete time series, (2) the
thin capped bar indicates the location of the 1st and 99th percentile of the data (3) the small
dashes indicate the minimum and maximum points and (4) the thick bar is the median seasonal
inner-98% amplitude.

median activity, ̂S, but decrease with rotation period, Prot . In fact, from the larger
sample of 26 stars we find good linear relationships between median activity and the
amplitude, while the relationship with rotation period has significant scatter (Egeland
et al. 2017, in preparation). On the Sun, the S-index is a proxy for surface magnetic flux
(e.g. Harvey and White 1999; Pevtsov et al. 2016). From Table 1 we conclude that the
younger Sun had not only higher mean levels of surface flux, but also significantly larger
variation in surface flux over decadal timescales. The most active star in our sample,
HD 20630 (κ1 Ceti), has an amplitude of S-index variability over four times the solar
amplitude. The variability is quite erratic, as can be seen in Figure 1, but a period of
reduced activity persists for about two decades from 1975 to 1995. HD 30495 varies by 2.5
times the solar amplitude, though it appears to have a semi-regular cycle with a period
of ∼12 yr (Egeland et al. 2015). HD 76151 is also varying with about 2.5 times the solar
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(a) (b)

Figure 2. Variability in the combined Strömgren (b + y)/2 bandpass from the Fairborn Ob-
servatory APT differential photometry. Note that the y-axis is reversed so that higher points
represent higher brightness. Panel (a) shows the nightly measurements for each star on the
same scale, with the arbitrary mean value shifted in increments of 50 mmag. Seasonal means
are shown with red points, and are shown again with a smaller scale in panel (b). Error bars
indicate the uncertainty of the seasonal mean.

amplitude, but quite erratically. HD 146233 (18 Sco) varies with a 50% larger amplitude
than the Sun in a cyclic fashion (Hall et al. 2007), while the subgiant HD 9562 has an
amplitude about 20% smaller.

Figure 2 shows the variability of our sample in Strömgren (b + y)/2 from the Fairborn
Observatory Automated Photometric Telescopes (APT; Henry et al. 1995). The photo-
metric brightness is measured in millimagnitudes (mmag). In these visible bandpasses
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the range of variability across the sample is even more pronounced. The full range of
the seasonal means, Aby,s , is shown in Table 1. The Sun’s variability in b + y is not well
known, but Lockwood et al. (2007) estimate it from the TSI variations and a blackbody
approximation of spectral irradiance.† Note that the solar twin 18 Sco has a similar am-
plitude of variability to the solar estimate. We find that for HD 20630 the amplitude
of variability in the visible varies by about twenty times the estimated solar value. HD
30495 varies by about 14 times the solar amplitude, and HD 76151 about 5 times. The
flat-activity subgiant 9562 varies slightly more in the visible than the Sun and 18 Sco.

3. Consequences for Planetary Climate
What would be the impact on Earth climate if Sun were to vary by twenty times its

present value in the visible, as does the young solar analog HD 20630 (κ1 Ceti)? If HD
20630 represents the Sun at an age of ∼500 Myr, then this greatly enhanced variability
took place ∼4.1 Gya, at a time when life may have been forming on Earth (Bell et al.
2015). Did the enhanced variability play a role in the development of life on Earth? Is
such stellar variability a significant factor in determining the habitability of exoplanets?

To begin to address these questions, we consider the Earth climate study of Meehl et al.
(2013), who asked whether a future Maunder Minimum-type event might significantly
slow global warming. Meehl et al. (2013) used the Whole Atmosphere Community Cli-
mate Model (WACCM) and modified the solar TSI input to include a step-function
0.25% decrease lasting 50 years. The model produced an immediate response in globally
averaged temperature to this small decrease in TSI compared to the baseline case with
no prolonged TSI decrease, reducing global temperature by several tenths of a degree
centigrade. However, following the period of decreased TSI the warming trend resumed
and caught up with the baseline case. Thus, Meehl et al. (2013) concludes that a future
Maunder Minimum-like event could slow down, but not stop the global warming trend.

For our purposes, the significant point is that the global temperature registered an
immediate response to the small 0.25% decrease in TSI. When the Sun was like HD
20630, it may have produced a much larger variations of the order 1-2%. What would
solar variability such as this entail for the primitive Earth surface atmosphere and oceans,
which were significantly different not only in composition (much less oxygen), but in
structure (continental shifts)? More detailed theoretical work is required to determine the
importance of such enhanced stellar variability on ancient Earth and exoplanet climate.

R.E. thanks the organizers for the invitation to this symposium and the travel funding
provided by the AAS-SPD Thomas Metcalf award. R.E. is supported by the Newkirk
Fellowship at the NCAR High Altitude Observatory.
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