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ABSTRACT   

Integrated optics is a well established technology that finds its main applications in the fields of optical communication 
and sensing. However, it is expanding into new areas, and in the last decade application in astronomical interferometry 
has been explored. In particular, several examples have been demonstrated in the areas of beam control and combination. 
In this paper, different examples of application integrated optics devices for fabrication of beam combiners for 
astronomical interferometry is given. For the multiaxial beam combiners, a UV laser direct writing unit is used for mask 
fabrication. The operation principles of the coaxial combiners fabricated in hybrid sol-gel were validated using an 
interferometric set-up. These results demonstrate that hybrid sol-gel technology can produce quality devices, opening the 
possibility of rapid prototyping of new designs and concepts. 
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1. INTRODUCTION  
Guided wave optics has been widely used in astronomical interferometry, starting with the use of optical fibers in many 
instruments. Fibers can be simply be used for optical signal transportation, but also for more complex functions that 
involve spatial filtering [1], optical coupling and interference [2]. Fiber components also find applications in this domain; 
fiber Bragg gratings are used to filter atmospheric collected radiation such the one that has origin on OH emission [3]. 

The other example of guided wave optics come from the application of integrated optics in instrumentation, which can 
be used for several applications such as tracking, beam combination and photometry, dispersive functions and detection 
[4]. Probably the most common application is beam combination, which is a fundamental function in long baseline 
astronomical interferometry. The complex visibility of the interferometric signal can be used to determine the object 
intensity distribution through Fourier processing according to the Van-Cittert Zernike theorem. 

Integrated optic devices for application in astronomical interferometry have been demonstrated in several fabrication 
techniques. One is ion-exchange [5], where the refractive index increase in the designed areas is achieved with recourse 
to ion exchange between the salt and the glass substrate. Passive devices were also produced in silica technology using 
typical dry-etching structuring [6]. UV written devices were also demonstrated in germanium doped silica, showing two 
telescopes beam combination for the H-band [7]. Active devices were also demonstrated with recourse to Ti in-diffusion 
in periodically poled lithium niobate [8], where frequency up-conversion was demonstrated bringing the optical 
detection to visible wavelengths, taking advantage of the high quality of the detectors in this region (low noise and high 
quantum efficiency).   
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Two different device production processes were used in the case of the results shown here. In the first case, the hybrid 
sol-gel material is exposed through an amplitude mask; the photopolymerized zones that will be the future waveguide 
cores will remain attached to the substrate, while the non-polymerized areas are simply washed away by an appropriate 
solvent. The structure is just covered with a cladding after development. Alternatively, the sample is just hard baked after 
UV exposure without development. On this case a refractive index contrast still is maintained between the exposed and 
non-exposed areas. 
A laser direct writing system has been developed and used for producing photolithographic masks for fabrication of the 
multiaxial beam combiners and also for direct writing of coaxial beam combiners. The laser writer is computer 
controlled, uses the output CAD files from the integrated optics simulation package, and the pattern is written by X-Y 
displacement of crossed precision translation stages (2nm resolution) under the dynamically focused laser beam.  
Loss levels measured on single mode sol-gel channel waveguides are 0.4dB/cm at 1300 nm, which are acceptable from 
the point of view of rapid prototyping. High performance devices should, however, employ lower loss silica waveguides 
which have a higher performance and their design follows very similar rules to those applied in the sol-gel case. 
 

3. RESULTS 
The devices fabricated were tested with the set-up shown in figure 3. 

 
Figure 3. Experimental test set-up for characterization of integrated optics beam combiners.. 

The set-up has three different light sources available. The visible laser (He-Ne) is used for device alignment with optical 
fibres. The superluminescent diode (SLD) with a FWHM of 50nm and centered at 1265nm is used for the beam 
combiners characterization. The narrowband source at 1300 nm is used for loss characterization and modal 
characterization of the fabricated waveguides. The polarization is controlled before splitting and the Mach-Zehnder 
testing interferometer is made of a combination of free space propagation and guided wave through polarization 
maintaining fibers. A translation stage is used in one of the arms to balance the optical path between both arms and to 
measure the interferometric output as a function of path scanning. Please note that the fiber ribbons that couples light 
into the device has several fibers mounted in a silicon V-grooved chip. The beam combiners are tested pairwise and 
therefore the fiber connections have to be set according. In Figure 3 the system is set to acquire the interferogram 
between inputs 1 and 4 of a four telescope beam combiner (4T). For each pair of inputs, the normalized interferogram 
intensity is given by 

ji

jiij
c

PP

PPI
I

βα

βα

2

−−
=

    (1) 

Proc. of SPIE Vol. 8001  800128-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/04/2013 Terms of Use: http://spiedl.org/terms



 

 

It allows the correction of the bias induced by the photometric unbalance over the different interferometric arms. The 
normalized interferogram intensity calculation consists of several steps: 

I. Feeding both inputs i and j (i≠j) and measuring the raw outputs: photometry Pi, photometry Pj and 
interferometry Iij.  

II. Compute the interferometric to photometric ratios α and β. This is achieved by feeding only one input (Ti) at a 
time and measuring the interferometric (Ii0) and the photometric (Pi0) intensities. α = Ii0/Pi0 is computed when 
input i is fed and β = I j0/Pj0 when input j is fed. 

Once the normalized intensity is computed using Eq. (1), the fringe visibility is estimated through  

max min

2
c cI IV −

=
    (2) 

In the case of the multiaxial beam combiners, the output optical fibers and detectors are replaced with a vidicon camera 
and an optical imaging system that images the power distribution at the device output over the camera detector. 

For easier characterization of the multiaxial two beam combiner (M2BC), a Y-splitter was added in the input of the 
device in the design of the photolithographic mask (see top of figure 4). This way only one input beam is required to test 
the whole device.  Any path difference in the chip will appear as shifting of the brightest fringe from the center of the 
pattern. The M2BC have a length of 10 mm and the result of simulation shows that for this length, only 90% of the total 
power exists in the fundamental mode (better values can be achieved at the cost of extra length). Fig. 4b (bottom right) 
shows the fringes with visibility of 90% measured in the M2BC using the SLD as the source. The asymmetry in the 
envelope of the interference pattern is due to the excitation of higher modes in the tapered waveguide, due to non-
optimal design.  

 
Figure 4. Simulation and experimental results for a two beam multiaxial beam combiner. Top) Device geometry and 

simulated spatial interferogram, middle) intensity profiles acquired with the vidicon camera and bottom) intensity 
profile at a horizontal scan line of the intensity profile. 

Proc. of SPIE Vol. 8001  800128-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/04/2013 Terms of Use: http://spiedl.org/terms



 

 

Fringe visibility of 98% has been measured for the simplest coaxial two beam combiner. Figure 5c shows the normalized 
interferograms and respective visibilities for each combination pair of the coaxial three beam combiners. Fringe 
visibilities of 94%, 96% and 97% have been measured, respectively for the combination pairs 1-3, 2-3 and 1-2. The 
different visibility values can be related to different lengths of the input fibers, which can lead to residual different 
chromatic differential dispersions. The cross-talk in the X-junction between inputs T2 and T3 was determined by 
measuring P2b (see figure), while only T3 was fed, obtaining a value less than -27 dB (0.2%). 

A four telescope beam combiner chip was also fabricated, being the best visibility between pair 1-2 (V=97.5%) and the 
worst visibility value between pair 1-4 (V=92.1%). 

 

 
Figure 5. a-b) A coaxial two and three beam combiner geometries, respectively; c) Interferograms resulting from the 

pairwise combination in the coaxial three beam combiner. 

 

The devices described above were produced following the steps described in figure 2, which employs flood exposure 
through an amplitude mask defined in a pure silica substrate. After exposure, the non photopolymerised areas are simply 
washed away and the waveguides core obtained by this process are subsequently covered by a cladding layer of hybrid 
sol-gel deposited after. However, devices can be produced by laser direct writing with a focused laser beam. In our case 
we used a frequency doubled argon laser emitting at 244nm. However, instead of using development of the non-
polymerised areas we just applied thermal treatment to cure all the sol-gel. This process is useful for rapid prototyping as 
mask replication techniques are dispensable. Using this process two (2T) and three beam (3T) combiners were 
fabricated.  Figure 6 shows a concatenation and stitching of photographs taken from a two beam combiner produced by 
the method described above; for this device the visibility was 95.1%, slightly below but comparable to the values 
obtained with devices produced with more standard techniques. However, when the number of inputs increase there was 
a clear degradation of the visibility values measured due to imperfections within the integrated chip. Figure 7 shows the 
visibility values obtained for the three beam combiners. It is obvious that there are some distortions of the interferograms 
as a consequence of errors within the device. 

 
Figure 5. Coaxial two beam combiner obtained by photographs stitching. 
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Figure 5. Normalized and corrected interferograms obtained from the interferometric output of the three beam 

combiner. The obtained fringe visibility was 88.5%, 80.4% and 56.6% for the (E1, E2), (E1, E3) and (E2, E3) 
pairs, respectively. 

4. CONCLUSION 
In this paper, the results of design, fabrication and characterization of a coaxial and multiaxial combiner and beam 
combiners for astronomical interferometry, using hybrid sol-gel technology are given. High contrast (≥ 90%) fringes 
have been obtained, demonstrating the high performance of the devices made by hybrid sol-gel. We have recently 
developed a laser photopatterning system which allows the writing of devices with fast turnaround times, but the results 
indicated that a fine tuning of the fabrication process still is required, as the results obtained demonstrate a lower 
performance of the devices produced by this method.  
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